MSD AT [Kor]

Chen et al./ Towards improving fast adversarial training in multi-exit network / Neural Networks 2022

Chen et al./ Towards improving fast adversarial training in multi-exit network / Neural Networks 2022

1. Problem definition

์ด๋ฏธ 2015๋…„์— CNN์ด ์ธ๊ฐ„๋ณด๋‹ค ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ๋” ์ž˜ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ ๊ฒฝ๋ง์— ์‹ฌ๊ฐํ•œ ์ทจ์•ฝ์ ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค. ์ด๋ฏธ์ง€์— ๊ณ„์‚ฐ๋œ noise๋ฅผ ์‚ฝ์ž…ํ•˜๋ฉด ์›๋ณธ ์ด๋ฏธ์ง€์™€ ๊ตฌ๋ถ„๋˜์ง€ ์•Š๋Š” ์ด๋ฏธ์ง€๋ฅผ ์˜ค๋ถ„๋ฅ˜ํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ์ ๋Œ€์  ๊ณต๊ฒฉ(adversarial attack)์ด๋ผ ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€๋ฅผ ์ ๋Œ€์  ์˜ˆ์ œ(adversarial example๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์€ ์ด๋Ÿฌํ•œ ์ทจ์•ฝ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜๋งŽ์€ ์—ฐ๊ตฌ๋ฅผ ํ–ˆ์ง€๋งŒ, ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‹ ๊ฒฝ๋ง์— ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ ์™ธ์—๋Š” ๋พฐ์กฑํ•œ ์ˆ˜๊ฐ€ ์—†๋‹ค๋Š” ๊ฒƒ์œผ๋กœ ์˜๊ฒฌ์„ ๋ชจ์œผ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ์ ๋Œ€์  ํ•™์Šต(adversarial training)์ด๋ผ๊ณ  ๋ถ€๋ฅด๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์‹ ๊ฒฝ๋ง์„ ๊ฐ•๊ฑด(robust)ํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์ ๋Œ€์  ํ•™์Šต์—๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ ๋Œ€์  ํ•™์Šต์„ ํ•˜๋ ค๋ฉด ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋งŒ๋“ค์–ด์ค˜์•ผ ํ•˜๋Š”๋ฐ, ์ •๋ฐ€ํ•œ ์˜ˆ์ œ๋ฅผ ๋งŒ๋“œ๋Š”๋ฐ ์˜ค๋žœ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฐ๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค. ์ ๋Œ€์  ํ•™์Šต์€ ์ผ๋ฐ˜์ ์ธ ํ•™์Šต ๋ณด๋‹ค 7~30๋ฐฐ์”ฉ ๊ฑธ๋ ค CIFAR-10์„ ํ•™์Šตํ•˜๋Š” ๋ฐ๋งŒ 4์ผ์”ฉ ๊ฑธ๋ฆฝ๋‹ˆ๋‹ค. ์ด๋กœ ์ธํ•ด ๋ช‡๋ช‡ ์—ฐ๊ตฌ๋Š” ์ ๋Œ€์  ํ•™์Šต์— ํ•„์š”ํ•œ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ์— ์ง‘์ค‘ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค. ์˜ค๋Š˜ ์†Œ๊ฐœํ•˜๋Š” ๋…ผ๋ฌธ์€ ๊ทธ๋Ÿฌํ•œ ์—ฐ๊ตฌ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.

์—ฐ๊ตฌ ๋ชฉํ‘œ: ์ ๋Œ€์  ํ•™์Šต์— ํ•„์š”ํ•œ ์‹œ๊ฐ„์„ ๋‹จ์ถ•

2. Motivation

1. Adversarial Attacks

Fast Gradient Sign Attack(FGSM)

๊ฐ€์žฅ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์ด๋ฏธ์ง€๋ฅผ ๋” ํฐ Loss๊ฐ’์ด ๋‚˜์˜ค๋„๋ก ์—…๋ฐ์ดํŠธํ•ฉ๋‹ˆ๋‹ค. Loss๋ฅผ ์ด๋ฏธ์ง€์— ๋ฏธ๋ถ„ํ•˜์—ฌ Loss๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐฉํ–ฅ์„ ๊ตฌํ•˜๊ณ  ์›๋ณธ ์ด๋ฏธ์ง€์— ฯต๋งŒํผ ํ”ฝ์…€ ๊ฐ’์„ ๋”ํ•ด์ค๋‹ˆ๋‹ค.

xย =x+ฯตโ‹…sign(โˆ‡xJ(w,x,y))x~=x+ฯตโ‹…sign(โˆ‡xJ(w,x,y))

Projected Gradient Descent(PGD)

FGSM๊ณผ ๋น„์Šทํ•˜๊ฒŒ ์ด๋ฏธ์ง€๋ฅผ Loss๊ฐ€ ์ฆ๊ฐ€ํ•˜๋„๋ก ์—…๋ฐ์ดํŠธ ํ•ฉ๋‹ˆ๋‹ค. FGSM์—์„œ๋Š” ํ•œ๋ฒˆ๋งŒ ์—…๋ฐ์ดํŠธ ํ•˜๋Š” ๋ฐ ๋ฐ˜๋ฉด์— PGD์—์„œ๋Š” n๋ฒˆ ๋ฐ˜๋ณตํ•˜์—ฌ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋” ์ •๋ฐ€ํ•œ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋ฏธ์ง€์˜ Loss๋ฅผ ๊ตฌํ•˜๊ณ  ์—…๋ฐ์ดํŠธ ํ•˜๋Š” ๊ณผ์ •์—์„œ forward pass์™€ backward pass๋ฅผ ๋ฐ˜๋ณตํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งŽ์ด ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

xt+1=ฮ x+S(xt+ฮฑsign(โˆ‡xJ(w,x,y)))x_t+_1 = ฮ _x+_S(x^t + ฮฑsign(โˆ‡xJ(w,x,y)))

2. Adversarial Training

FGSM์„ ์ด์šฉํ•ด Adversarial Training์„ ํ•˜๊ฒŒ ๋˜๋ฉด, FGSM์™€ ๊ฐ™์€ ์•ฝํ•œ ๊ณต๊ฒฉ์—๋งŒ ๊ฐ•๊ฑดํ•ด์ง€๊ณ  ๋‹ค๋ฅธ ๊ณต๊ฒฉ์€ ๋ง‰์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด์— PGD ๊ณต๊ฒฉ๊ณผ ๊ฐ™์ด ๊ฐ•ํ•œ ๊ณต๊ฒฉ์œผ๋กœ ํ•™์Šต ์‹œํ‚ค๋ฉด PGD ๊ณต๊ฒฉ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ๊ณต๊ฒฉ์— ๋Œ€ํ•ด์„œ๋„ ๊ฐ•๊ฑดํ•˜๋‹ค๋Š” ๊ฒƒ์„์„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ PGD๋ฅผ ์ด์šฉํ•œ Adversarial Training์ด ๊ธฐ๋ณธ์ ์ธ ํ•™์Šต ๋ฐฉ๋ฒ•์œผ๋กœ ์ž๋ฆฌ์žก๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ ์•ž์„œ ์–ธ๊ธ‰ํ–ˆ๋“ฏ์ด PGD๋กœ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•ด์•ผ ํ•จ์œผ๋กœ ์ธํ•ด ํ•™์Šต ์‹œ๊ฐ„์ด 7~30๋ฐฐ์”ฉ ์ฆ๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ถ”๊ฐ€์  ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด FGSM์„ ์ด์šฉํ•ด๋„ ๊ฐ•๊ฑดํ•œ ์‹ ๊ฒฝ๋ง์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค. FGSM์œผ๋กœ Adversarial Training์„ ํ•˜๋ฉด gradient masking์ด๋‚˜ catastrophic overfitting์ด ๋ฌธ์ œ๊ฐ€ ๋œ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. Gradient masking ํ˜„์ƒ์€ ์‹ ๊ฒฝ๋ง์ด ๊ฐ•๊ฑดํ•ด์ง€์ง€ ์•Š์•˜์ง€๋งŒ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๋„๋ก gradient๊ฐ€ ๋ณ€ํ•˜๊ฒŒ ๋˜์–ด ๊ฑฐ์ง“๋œ ๊ฐ•๊ฑดํ•จ์„ ๋ณด์ด๋Š” ๊ฒƒ์ด๊ณ , catastrophic overfitting์€ ํ•™์Šต์ด ์ง„ํ–‰๋˜๋ฉฐ ๊ฐ•๊ฑด์„ฑ์ด ์ฆ๊ฐ€ํ•˜๋‹ค๊ฐ€ ์–ด๋А ์‹œ์ ๋ถ€ํ„ฐ FGSM์— overfitting๋˜์–ด ๊ฐ•๊ฑดํ•จ์ด 0์ด ๋˜๋Š” ํ˜„์ƒ์„ ๊ฐ€๋ฅดํ‚ต๋‹ˆ๋‹ค.

3. Multi-exit Network

MSDnet

์ €์ž๋Š” ๊ทธ ํ•ด๊ฒฐ์ฑ… ์ค‘ ํ•˜๋‚˜๋กœ Multi-exit Network๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. MSDnet์€ ์—ฐ์‚ฐ์„ ํšจ์œจ์„ ์œ„ํ•ด ๊ฒฐ๊ณผ๊ฐ€ ์ถœ๋ ฅ๋˜๋Š” ์œ„์น˜๋ฅผ ์—ฌ๋Ÿฌ ๊ณณ์œผ๋กœ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค. ์ถœ๋ ฅ๋˜๋Š” ์œ„์น˜๋Š” ์–•์€ ๋ ˆ์ด์–ด์—์„œ ๊นŠ์€ ๋ ˆ์ด์–ด๊นŒ์ง€ ์žˆ๋Š”๋ฐ ๋ถ„๋ฅ˜๊ฐ€ ์‰ฌ์šด ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ๋˜๋ฉด ์•์€ ๊ณณ์—์„œ confidence๊ฐ€ ์ถฉ๋ถ„ํžˆ ๋†’์•„์ ธ ๋” ๊นŠ์€ ๋ ˆ์ด์–ด๊นŒ์ง€ ์—ฐ์‚ฐ์ด ๋˜์ง€ ์•Š์•„๋„ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋’ค์— ๋ ˆ์ด์–ด๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก catastrophic overfitting์— ์ทจ์•ฝํ•ด์ง„๋‹ค๋Š” ์ ์„ ๋ณด์ด๋Š”๋ฐ, MSDnet๊ฐ€ ์–•์€ ์—ฐ์‚ฐ์œผ๋กœ๋„ ๊ฒฐ๊ณผ๊ฐ’์„ ์ถœ๋ ฅํ•œ๋‹ค๋Š” ์ ์„ ์ด์šฉํ•ฉ๋‹ˆ๋‹ค.

Idea

FGSM์„ ์ด์šฉํ•ด Adversarial Training์„ ํšจ์œจ์ ์œผ๋กœ ํ•จ๊ณผ ๋™์‹œ์— Multi-exit Network๊ณผ regularization์„ ์ด์šฉํ•ด catastrophic overfitting์„ ํ•ด๊ฒฐ

3. Method

์ €์ž๋Š” ์˜ค๋ฒ„ํ”ผํŒ…์ด ์ผ์–ด๋‚˜๋Š” ์ด์œ ๋ฅผ ๋‘๊ฐ€์ง€๋ฅผ ๊ผฝ์Šต๋‹ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ๋Š” ๋ชจ๋ธ์˜ ๊นŠ์ด์ž…๋‹ˆ๋‹ค. ์•„๋ž˜์˜ ์™ผ์ชฝ ๊ทธ๋ฆผ์€ clean ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅํ–ˆ์„ ๋•Œ์˜ feature์™€ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ž…๋ ฅํ–ˆ์„๋•Œ์˜ feature๊ฐ„์˜ ๊ฑฐ๋ฆฌ์ž…๋‹ˆ๋‹ค(L2 norm). ๊ฑฐ๋ฆฌ ์ฐจ์ด๊ฐ€ ํด์ˆ˜๋ก ๋ชจ๋ธ์˜ feature๊ฐ€ ๊ณต๊ฒฉ์— ํฌ๊ฒŒ ๋ฐ˜์‘ํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  PGD๊ฐ€ FGSM๋ณด๋‹ค ๊ฑฐ๋ฆฌ๊ฐ€ ํฐ ๊ฒƒ์œผ๋กœ ๋ณด์•„ PGD ๊ณต๊ฒฉ์ด ๋” ๊ฐ•ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊นŠ์ด๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก ๋” ํฌ๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜ ์˜ค๋ฅธ์ชฝ ๊ทธ๋ฆผ์€ ์ ๋Œ€์  ํ•™์Šต์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ์ •ํ™•๋„๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€๋ฅผ ๋ณด์ž…๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ํ™•์ผ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ๊นŠ์ด๊ฐ€ ๋‚ฎ์€(classifier 1,2)์— ๋น„ํ•ด ๊นŠ์ด๊ฐ€ ๊นŠ์€(classifier 3,4,5)๊ฐ€ ์–ด๋А ์‹œ์  ์ดํ›„๋ถ€ํ„ฐ๋Š” ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง„๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ฆ‰ ๊นŠ์ด๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก catastrophic overfitting ์— ์ทจ์•ฝํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ Multi-exit network๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์–•์€ classifier์„ ํ†ต๊ณผํ•˜๋Š” ์˜ˆ์ œ์— ์žˆ์–ด์„œ๋Š” ๊ณผ์ ํ•ฉ์„ ํ”ผํ•ด ๋†’์€ ์ •ํ™•๋„๋ฅผ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ์ €์ž์˜ ์•„์ด๋””์–ด์ž…๋‹ˆ๋‹ค.

์ €์ž๋Š” ๋‘ ๋ฒˆ์งธ ์›์ธ์ด fully connected layer์˜ weighs์— ์žˆ๋‹ค๊ณ  ์ฃผ์žฅํ•ฉ๋‹ˆ๋‹ค. ์ €์ž๋Š” weights์˜ ๋ถ„์‚ฐ์ด ์ž‘์„์ˆ˜๋ก ์ ๋Œ€์  ๊ณต๊ฒฉ์— ์ทจ์•ฝํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ fully connected layer์— l2 ์ •๊ทœํ™”๋ฅผ ํ•˜์—ฌ ๋ถ„์‚ฐ์„ ๋†’์—ฌ ์ ๋Œ€์  ์˜ˆ์ œ์— ๋Œ€ํ•œ ๋ฐ˜์‘์„ ๋‚ฎ์ถ”๋Š” ๋™์‹œ์— ๊ณผ์ ํ•ฉ์˜ ์˜ํ–ฅ๋ ฅ์„ ์ค„์ž…๋‹ˆ๋‹ค. ์ด๋•Œ ์–ธ๋”ํ”ผํŒ…์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ ๋‹นํ•œ ๊ฐ€์ค‘์น˜๋ฅผ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๊ณ , ๋” ๊นŠ์€ ๋„คํŠธ์›Œํฌ์ผ์ˆ˜๋ก ๊ฐ€์ค‘์น˜๋ฅผ ๋†’์˜€๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

HyperParameters

CIFAR-10์—์„œ๋Š” SGD optimizer๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๋ชจ๋ฉ˜ํ…€์„ 0.9๋กœ ์„ค์ •ํ•˜์—ฌ 100์—ํญ๋งŒํผ ํ•™์Šต์‹œ์ผฐ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  MSDnet(block=5) ์‚ฌ์šฉ CIFAR-100์—์„œ๋Š” MSDnet(block=7)์„ ์‚ฌ์šฉํ–ˆ๊ณ , FC์—์„œ L2 regulization์—์„œ๋Š” ฮป = [0.1, 0.1, 0.1, 0.15, 0.15, 0.15, 0.15] ๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.

4. Experiment & Result

Dataset

Imagenet์€ ํ•™์Šต์‹œ๊ฐ„์ด ๋„ˆ๋ฌด ๊ธธ์–ด ๋ฒค์น˜๋งˆํฌ๊ฐ€ ๊ฑฐ์˜ ์—†์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ CIFAR-10, CIFAR-100, SVHN ๋ฐ์ดํ„ฐ์…‹์—์„œ ์‹คํ—˜์„ ์ง„ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” CIFAR ๋ฐ์ดํ„ฐ์…‹ result๋งŒ ์†Œ๊ฐœํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

Results

์šฐ์„  CIFAR 10 ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์ •ํ™•๋„๋ฅผ ๋น„๊ตํ•ด๋ด…์‹œ๋‹ค. "Standard"๋Š” ๊ณต๊ฒฉํ•˜์ง€ ์•Š์€ ์›๋ณธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ , ๋‚˜๋จธ์ง€ ๊ฐ Column์€ ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•์ด๊ณ , (%)๋Š” ๊ฐ ๊ณต๊ฒฉ์— ๋Œ€ํ•œ ์ •ํ™•๋„์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ๊ณต๊ฒฉ์— ๋Œ€ํ•ด ์ •ํ™•๋„๊ฐ€ ๋†’์„์ˆ˜๋ก robustness๊ฐ€ ๋†’์Šต๋‹ˆ๋‹ค.

์šฐ์„  ์ •ํ™•๋„๋ถ€ํ„ฐ ๋น„๊ต ํ•ด ๋ณด๋ฉด ๋Œ€์ฒด๋กœ SotA ๋ชจ๋ธ์— ๋น„ํ•ด ๋น„์Šทํ•˜๊ฑฐ๋‚˜ ๋” ๋†’์€ ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ๊ณต๊ฒฉ์œผ๋กœ ํ• ๋ ค์ง„ AA(Auto Attack)์— ๋Œ€ํ•ด ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ ๊ฒƒ์€ ๊ด„๋ชฉํ• ๋งŒํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. ๊ฐ€์žฅ ๊ฐ•๊ฑดํ•œ ๋ชจ๋ธ ์ค‘ ํ•˜๋‚˜๋กœ ์•Œ๋ ค์ง„ TRADES ๋ณด๋‹ค ํ•™์Šต์‹œ๊ฐ„์ด ๋ฐ˜์ ˆ๋ฐ–์— ์•ˆ๋œ๋‹ค๋Š” ์ ์ด ๋ˆˆ์—ฌ๊ฒจ๋ณผ ์ ์ž…๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด์— Free-8 ๋ฐฉ๋ฒ•์— ๋น„ํ•ด์„œ๋Š” ํ•™์Šต ์‹œ๊ฐ„์ด ์•ฝ ์„ธ๋ฐฐ์ •๋„ ๊ฑธ๋ฆฌ๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ €์ž์˜ ๋ฐฉ๋ฒ•์ด ๋ชจ๋“  ๊ณต๊ฒฉ์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋‹ค์Œ์€ CIFAR ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ •ํ™•๋„๋ฅผ ์‚ดํŽด๋ด…์‹œ๋‹ค.

๋จผ์ € ๋ˆˆ์— ๋„๋Š” ์ ์€ TRADES ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์กฐ๊ธˆ ๋’ค์ง„๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ํ•™์Šต์‹œ๊ฐ„ ๋ฐ˜์ ˆ์ด๋ผ๋Š” ์ ์„ ๊ณ ๋ คํ•˜๋ฉด ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์—๋„ ์žฅ์ ์ด ์žˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ €์ž๋Š” Free-8 ๋ฐฉ๋ฒ•๊ณผ Fast FGSM ๋ฐฉ๋ฒ•์€ ํ•™์Šต ์‹œ๊ฐ„์€ ๋œ ๊ฑธ๋ฆฌ๋Š” ๋ฐ˜๋ฉด์— ๊ณต๊ฒฉ ๋ฐฉ์‹์ด gradient based(CW-100 ๊ณต๊ฒฉ ๋ฐฉ์‹๊ณผ๋Š” ๋‹ค๋ฆ„)์ธ ๊ฒƒ๋งŒ ์ž˜ ๋ง‰๋Š”๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

์ „๋ฐ˜์ ์œผ๋กœ ์•ˆํƒ€๊นŒ์šด ์ ์€ ์ ๋Œ€์  ํ•™์Šต SotA ๋ชจ๋‘ CIFAR-100์ด๋ผ๋Š” ImageNet๊ณผ ๊ฐ™์€ ๋ฐ์ดํ„ฐ์…‹๋ณด๋‹ค๋Š” ๋น„๊ต์  ๋‹จ์ˆœํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋„ ๋‚ฎ์€ ๋ฐฉ์–ด์œจ์„ ๋ณด์ธ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์•„์ง๋„ ๊ฐ•๊ฑดํ•œ ์‹ ๊ฒฝ๋ง์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•œ ๊ธธ์€ ํ•œ์ฐธ ๋‚จ์•„์žˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๊ฒ ์Šต๋‹ˆ๋‹ค.

5. Conclusion

์ €์ž๋Š” PGD ์ ๋Œ€์  ํ•™์Šต ๋ฐฉ๋ฒ•์˜ ์†๋„ ๊ฐœ์„ ์„ ์œ„ํ•ด FGSM์„ ์‚ฌ์šฉํ•˜๊ณ  ๊ทธ์— ๋”ฐ๋ฅธ catastrophic overfitting ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Multi-exit ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๊ณ , ๊นŠ์€ ๋„คํŠธ์›Œํฌ์—์„œ ์ ๋Œ€์  ๊ณต๊ฒฉ์— ๊ฐ•๊ฑดํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด Fully connected layer์— l2 regularization์„ ์ถ”๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ด๋ฅผ ํ†ตํ•ด ๊ฐ€์žฅ ๊ฐ•๊ฑดํ•œ ํ•™์Šต ๋ฐฉ๋ฒ•์ธ TRADES์™€ ๋น„์Šทํ•œ ์ •ํ™•๋„๋ฅผ ๋ณด์ด๋ฉด์„œ๋„ ํ•™์Šต์‹œ๊ฐ„์„ ๋ฐ˜์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

Take home message (์˜ค๋Š˜์˜ ๊ตํ›ˆ)

์‹ฌ์ธต ์‹ ๊ฒฝ๋ง์ด ์šฐ๋ฆฌ ์ƒํ™œ์— ๊ฐ€๊นŒ์›Œ์ง์— ๋”ฐ๋ผ ๊ฐ•๊ฑดํ•œ ๋ชจ๋ธ์˜ ํ•„์š”์„ฑ์ด ๋”์šฑ ์ปค์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ๋‚˜๋งˆ ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜๋Š” ์ ๋Œ€์  ํ•™์Šต ๋ฐฉ๋ฒ•์€ ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งค์šฐ ํฐ๋ฐ ๋น„ํ•ด ์ •ํ™•๋„๋Š” ์‹ค๋ง์Šค๋Ÿฌ์›Œ ๋ณด์ด๊ธฐ๋„ ํ•œ๋‹ค. ์‹ ๊ฒฝ๋ง์˜ ๊ฐ•๊ฑด์„ฑ์„ ํš๊ธฐ์ ์œผ๋กœ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ํš๊ธฐ์ ์ธ ๋ฐฉ๋ฒ•์€ ์—†์„๊นŒ?

Author / Reviewer information

Author

์ „์šฐ์ง„ (Woo Jin Jeon)

  • KAIST Electrical / CILAB

  • woojin.jeon337@gmail.com

Reviewer

  1. Korean name (English name): Affiliation / Contact information

  2. Korean name (English name): Affiliation / Contact information

  3. ...

Reference & Additional materials

  1. Madry, Aleksander, et al. โ€œTowards Deep Learning Models Resistant to Adversarial Attacks.โ€ ICRL 2017

  2. Goodfellow, Ian J., et al. โ€œExplaining and Harnessing Adversarial Examples.โ€ ArXiv.org , 2014

  3. Chen, Sihong, et al. โ€œTowards Improving Fast Adversarial Training in Multi-Exit Network.โ€ Neural Networks , vol. 150, June 2022

  4. Huang, Gao, et al. โ€œMulti-Scale Dense Networks for Resource Efficient Image Classification.โ€ ICRL 2018

โ€Œ

โ€Œ

โ€Œ

โ€Œ

Last updated

Was this helpful?