๐Ÿ“
Awesome reviews
  • Welcome
  • Paper review
    • [2022 Spring] Paper review
      • RobustNet [Eng]
      • DPT [Kor]
      • DALL-E [Kor]
      • VRT: A Video Restoration Transformer [Kor]
      • Barbershop [Kor]
      • Barbershop [Eng]
      • REFICS [ENG]
      • Deep texture manifold [Kor]
      • SlowFast Networks [Kor]
      • SCAN [Eng]
      • DPT [Kor]
      • Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation [Kor]
      • Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation [Eng]
      • Patch Cratf : Video Denoising by Deep Modeling and Patch Matching [Eng]
      • LAFITE: Towards Language-Free Training for Text-to-Image Generation [Kor]
      • RegSeg [Eng]
      • D-NeRF [Eng]
      • SimCLR [Kor]
      • LabOR [Kor]
      • LabOR [Eng]
      • SegFormer [Kor]
      • Self-Calibrating Neural Radiance Fields [Kor]
      • Self-Calibrating Neural Radiance Fields [Eng]
      • GIRAFFE [Kor]
      • GIRAFFE [Eng]
      • DistConv [Kor]
      • SCAN [Eng]
      • slowfastnetworks [Kor]
      • Nesterov and Scale-Invariant Attack [Kor]
      • OutlierExposure [Eng]
      • TSNs [Kor]
      • TSNs [Eng]
      • Improving the Transferability of Adversarial Samples With Adversarial Transformations [Kor]
      • VOS: OOD detection by Virtual Outlier Synthesis [Kor]
      • MultitaskNeuralProcess [Kor]
      • RSLAD [Eng]
      • Deep Learning for 3D Point Cloud Understanding: A Survey [Eng]
      • BEIT [Kor]
      • Divergence-aware Federated Self-Supervised Learning [Eng]
      • NeRF-W [Kor]
      • Learning Multi-Scale Photo Exposure Correction [Eng]
      • ReActNet: Towards Precise Binary Neural Network with Generalized Activation Functions [Eng]
      • ViT [Eng]
      • CrossTransformer [Kor]
      • NeRF [Kor]
      • RegNeRF [Kor]
      • Image Inpainting with External-internal Learning and Monochromic Bottleneck [Eng]
      • CLIP-NeRF [Kor]
      • CLIP-NeRF [Eng]
      • DINO: Emerging Properties in Self-Supervised Vision Transformers [Eng]
      • DINO: Emerging Properties in Self-Supervised Vision Transformers [Kor]
      • DatasetGAN [Eng]
      • MOS [Kor]
      • MOS [Eng]
      • PlaNet [Eng]
      • MAE [Kor]
      • Fair Attribute Classification through Latent Space De-biasing [Kor]
      • Fair Attribute Classification through Latent Space De-biasing [Eng]
      • Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning [Kor]
      • PointNet [Kor]
      • PointNet [Eng]
      • MSD AT [Kor]
      • MM-TTA [Kor]
      • MM-TTA [Eng]
      • M-CAM [Eng]
      • MipNerF [Kor]
      • The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos [Eng]
      • Calibration [Eng]
      • CenterPoint [Kor]
      • YOLOX [Kor]
    • [2021 Fall] Paper review
      • DenseNet [Kor]
      • Time series as image [Kor]
      • mem3d [Kor]
      • GraSP [Kor]
      • DRLN [Kor]
      • VinVL: Revisiting Visual Representations in Vision-Language Models [Eng]
      • VinVL: Revisiting Visual Representations in Vision-Language Models [Kor]
      • NeSyXIL [Kor]
      • NeSyXIL [Eng]
      • RCAN [Kor]
      • RCAN [Eng]
      • MI-AOD [Kor]
      • MI-AOD [Eng]
      • DAFAS [Eng]
      • HyperGAN [Eng]
      • HyperGAN [Kor]
      • Scene Text Telescope: Text-focused Scene Image Super-Resolution [Eng]
      • Scene Text Telescope: Text-focused Scene Image Super-Resolution [Kor]
      • UPFlow [Eng]
      • GFP-GAN [Kor]
      • Federated Contrastive Learning [Kor]
      • Federated Contrastive Learning [Eng]
      • BGNN [Kor]
      • LP-KPN [Kor]
      • Feature Disruptive Attack [Kor]
      • Representative Interpretations [Kor]
      • Representative Interpretations [Eng]
      • Neural Discrete Representation Learning [KOR]
      • Neural Discrete Representation Learning [ENG]
      • Video Frame Interpolation via Adaptive Convolution [Kor]
      • Separation of hand motion and pose [kor]
      • pixelNeRF [Kor]
      • pixelNeRF [Eng]
      • SRResNet and SRGAN [Eng]
      • MZSR [Kor]
      • SANforSISR [Kor]
      • IPT [Kor]
      • Swin Transformer [kor]
      • CNN Cascade for Face Detection [Kor]
      • CapsNet [Kor]
      • Towards Better Generalization: Joint Depth-Pose Learning without PoseNet [Kor]
      • CSRNet [Kor]
      • ScrabbleGAN [Kor]
      • CenterTrack [Kor]
      • CenterTrack [Eng]
      • STSN [Kor]
      • STSN [Eng]
      • VL-BERT:Visual-Linguistic BERT [Kor]
      • VL-BERT:Visual-Linguistic BERT [Eng]
      • Squeeze-and-Attention Networks for Semantic segmentation [Kor]
      • Shot in the dark [Kor]
      • Noise2Self [Kor]
      • Noise2Self [Eng]
      • Dynamic Head [Kor]
      • PSPNet [Kor]
      • PSPNet [Eng]
      • CUT [Kor]
      • CLIP [Eng]
      • Local Implicit Image Function [Kor]
      • Local Implicit Image Function [Eng]
      • MetaAugment [Eng]
      • Show, Attend and Tell [Kor]
      • Transformer [Kor]
      • DETR [Eng]
      • Multimodal Versatile Network [Eng]
      • Multimodal Versatile Network [Kor]
      • BlockDrop [Kor]
      • MDETR [Kor]
      • MDETR [Eng]
      • FSCE [Kor]
      • waveletSR [Kor]
      • DAN-net [Eng]
      • Boosting Monocular Depth Estimation [Eng]
      • Progressively Complementary Network for Fisheye Image Rectification Using Appearance Flow [Kor]
      • Syn2real-generalization [Kor]
      • Syn2real-generalization [Eng]
      • GPS-Net [Kor]
      • Frustratingly Simple Few Shot Object Detection [Eng]
      • DCGAN [Kor]
      • RealSR [Kor]
      • AMP [Kor]
      • AMP [Eng]
      • RCNN [Kor]
      • MobileNet [Eng]
  • Author's note
    • [2022 Spring] Author's note
      • Pop-Out Motion [Kor]
    • [2021 Fall] Author's note
      • Standardized Max Logits [Eng]
      • Standardized Max Logits [Kor]
  • Dive into implementation
    • [2022 Spring] Implementation
      • Supervised Contrastive Replay [Kor]
      • Pose Recognition with Cascade Transformers [Eng]
    • [2021 Fall] Implementation
      • Diversity Input Method [Kor]
        • Source code
      • Diversity Input Method [Eng]
        • Source code
  • Contributors
    • [2022 Fall] Contributors
    • [2021 Fall] Contributors
  • How to contribute?
    • (Template) Paper review [Language]
    • (Template) Author's note [Language]
    • (Template) Implementation [Language]
  • KAIST AI
Powered by GitBook
On this page
  • 1. Problem definition
  • 2. Motivation
  • Related work
  • Idea
  • 3. Method
  • 4. Experiment & Result
  • Experimental setup
  • Result
  • 5. Conclusion
  • Take home message (์˜ค๋Š˜์˜ ๊ตํ›ˆ)
  • Author / Reviewer information
  • Author
  • Reviewer

Was this helpful?

  1. Paper review
  2. [2021 Fall] Paper review

Feature Disruptive Attack [Kor]

Ganeshan et al. / Feature Disruptive Attack / ICCV 2019

PreviousLP-KPN [Kor]NextRepresentative Interpretations [Kor]

Last updated 3 years ago

Was this helpful?

1. Problem definition

Deep neural network (DNN)๋Š” ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜, ๋ฌผ์ฒด ๊ฒ€์ถœ ๋“ฑ ๋‹ค์–‘ํ•œ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ ํ›Œ๋ฅญํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ DNN์€ ์ด๋ฏธ์ง€์— ์ธ๊ฐ„์˜ ๋ˆˆ์— ์ž˜ ์ธ์‹๋˜์ง€ ์•Š๋Š” ์ž‘์€ ๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ๋งŒ๋“  ์ ๋Œ€์  ์˜ˆ์ œ์— ์ทจ์•ฝํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฐ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์ ๋Œ€์  ๊ณต๊ฒฉ์ด๋ผ ํ•ฉ๋‹ˆ๋‹ค. ์ ๋Œ€์  ๊ณต๊ฒฉ๊ณผ ์ด๋ฅผ ๋ง‰๊ธฐ ์œ„ํ•œ ๋ฐฉ์–ด ๊ธฐ๋ฒ•๋“ค์ด ์ œ์•ˆ๋˜๋Š” ๊ณผ์ •์—์„œ ๋„คํŠธ์›Œํฌ์˜ ์ทจ์•ฝ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์ด๋Š” ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ๊ณผ robustness๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ์€ ๋„คํŠธ์›Œํฌ์— ๋Œ€ํ•œ ์ดํ•ด์™€ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ๋„์›€์„ ์ค๋‹ˆ๋‹ค. ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์—์„œ์˜ ์ ๋Œ€์  ๊ณต๊ฒฉ์€ ๋„คํŠธ์›Œํฌ๊ฐ€ ์›๋ณธ ์ด๋ฏธ์ง€์˜ class๋กœ ์ธ์‹ํ•˜์ง€ ๋ชปํ•˜๋„๋ก ์ด๋ฏธ์ง€์— ๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ•œ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด์˜ ์ ๋Œ€์  ๊ณต๊ฒฉ๋“ค์€ DNN์˜ ๋งˆ์ง€๋ง‰ ๋ถ€๋ถ„์— ํ•ด๋‹นํ•˜๋Š” softmax ํ˜น์€ pre-softmax๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ ‡๊ฒŒ ์ƒ์„ฑํ•œ ์ ๋Œ€์  ์˜ˆ์ œ๋Š” ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค๊ณ  ๋งํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ ๋Œ€์  ์˜ˆ์ œ์˜ deep feature๊ฐ€ ์›๋ณธ ์ด๋ฏธ์ง€์˜ ์ •๋ณด๋ฅผ ์—ฌ์ „ํžˆ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด๊ณ  ๋‘ ๋ฒˆ์งธ๋Š” network๊ฐ€ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์›๋ณธ ์ด๋ฏธ์ง€์™€ ์œ ์‚ฌํ•œ class๋กœ ์ธ์‹ํ•˜๊ฑฐ๋‚˜ ์›๋ณธ ์ด๋ฏธ์ง€๋กœ ์˜ˆ์ธกํ•˜๋Š” ํ™•๋ฅ ์ด ์—ฌ์ „ํžˆ ๋†’๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.

2. Motivation

Related work

  1. FGSM ์›๋ณธ ์ด๋ฏธ์ง€๋ฅผ xxx, ์›๋ณธ ์ด๋ฏธ์ง€์˜ class๋ฅผ yGTy_{GT}yGTโ€‹, ๋„คํŠธ์›Œํฌ์˜ cross entropy loss function J๋ผ๊ณ  ํ–ˆ์„ ๋•Œ ์ด๋ฏธ์ง€ xxx์— ๋Œ€ํ•œ loss function์˜ gradient ๋ถ€ํ˜ธ๋ฅผ ์ด์šฉํ•˜์—ฌ yGTy_{GT}yGTโ€‹์— ๋Œ€ํ•œ loss function์ด ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ด๋ฏธ์ง€๋ฅผ ์—…๋ฐ์ดํŠธํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์„ ํ†ตํ•ด ๋„คํŠธ์›Œํฌ๊ฐ€ ์›๋ณธ ์ด๋ฏธ์ง€์˜ class๋กœ ์ธ์‹ํ•˜์ง€ ๋ชปํ•˜๋„๋ก ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์ด FGSM (Fast Gradient Sign Method)์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

  2. PGD FGSM ๊ณผ์ •์„ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐ˜๋ณตํ•œ ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•์„ PGD ๋˜๋Š” I-FGSM (Iterative-FGSM)์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด๋•Œ yGTy_{GT}yGTโ€‹ ๋Œ€์‹  ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ƒ๋˜๋Š” class์ธ yMLy_{ML}yMLโ€‹์„ ์‚ฌ์šฉํ•˜๋ฉด most-likely attack, PGD-ML์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. yGTy_{GT}yGTโ€‹ ๋Œ€์‹  ๊ฐ€์žฅ ๋‚ฎ์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ƒ๋˜๋Š” class์ธ yLLy_{LL}yLLโ€‹์„ ์‚ฌ์šฉํ•˜๊ณ  loss๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ least likely attack, PGD-LL์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

  3. CW attack ์—ฌ๊ธฐ์„œ fff๋Š” logit (pre-softmax ๊ฐ’)์„ ์˜๋ฏธํ•˜๋ฉฐ ๋‘ ๋ฒˆ์งธ๋กœ ๋†’์€ ๊ฐ’์„ ๊ฐ€์ง€๋Š” logit์—์„œ ์ œ์ผ ๋†’์€ ๊ฐ’์„ ๊ฐ€์ง€๋Š” logit ๊ฐ’์„ ๋บ€ ๊ฐ’์„ loss๋กœ ์‚ฌ์šฉํ•˜๊ณ  ์ด์™€ ๋”๋ถˆ์–ด ์›๋ณธ ์ด๋ฏธ์ง€์™€ ์ ๋Œ€์  ์˜ˆ์ œ์˜ ๊ฑฐ๋ฆฌ๋„ loss๋กœ ํ•จ๊ป˜ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ loss๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๊ณต๊ฒฉ ์„ฑ๊ณต๋ฅ ์„ ์กฐ์ ˆํ•˜๋Š” ์ฒซ ๋ฒˆ์งธ loss์™€ ์›๋ณธ ์ด๋ฏธ์ง€์™€์˜ ์ฐจ์ด๋ฅผ ์กฐ์ ˆํ•˜๋Š” ๋‘ ๋ฒˆ์งธ loss์˜ ๊ฐ€์ค‘์น˜๋ฅผ ์ ๋‹นํ•˜๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•์„ CW attack (Carlini Wargner attack)๋ผ๊ณ  ํ•˜๋ฉฐ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐ˜๋ณตํ•˜๋ฉฐ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๊ธฐ ๋•Œ๋ฌธ์— PGD-CW์ด๋ผ๊ณ ๋„ ํ•ฉ๋‹ˆ๋‹ค.

  4. MI-FGSM FGSM์˜ ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ๋ชจ๋ฉ˜ํ…€์„ ์‚ฌ์šฉํ•˜์—ฌ local optima๋กœ ์ˆ˜๋ ดํ•˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์ตœ์ ํ™”๋ฅผ ๋” ์•ˆ์ •์ ์œผ๋กœ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ MI-FGSM (Momentum Iterative FGSM)์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

Idea

์œ„์˜ ๋ฐฉ๋ฒ•๋“ค์ฒ˜๋Ÿผ ๊ธฐ์กด ์ ๋Œ€์  ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•๋“ค์€ softmax ํ˜น์€ pre-softmax๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ–ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด ๋ฐฉ๋ฒ•์œผ๋กœ ์ƒ์„ฑํ•œ ์ ๋Œ€์  ์˜ˆ์ œ๋Š” ๋„คํŠธ์›Œํฌ๊ฐ€ ์›๋ณธ class๋กœ ์ œ๋Œ€๋กœ ๋ถ„๋ฅ˜ํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฑด ๋งž์ง€๋งŒ ์›๋ณธ class์™€ ๋น„์Šทํ•œ class๋กœ ๋ถ„๋ฅ˜ํ•˜๊ฑฐ๋‚˜ ๊ฐ layer์˜ feature์— ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๊ณ ์œ ํ•œ ์ •๋ณด๊ฐ€ ๋‚จ์•„์žˆ๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์–ด์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” feature๋ฅผ ์ด์šฉํ•˜์—ฌ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ ๋Œ€์  ์˜ˆ์ œ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ์ง€ํ‘œ์ธ NLOR๊ณผ OLNR์„ ์ œ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค.

3. Method

  1. Proposed evaluation metrics PGD-ML์€ ๊ณต๊ฒฉ ์ „์— ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜์—ˆ๋˜ class๋กœ ์ธ์‹๋˜์ง€ ์•Š์•„์•ผ ํ•˜๋ฏ€๋กœ ์›๋ณธ ์ด๋ฏธ์ง€์™€ ๋น„์Šทํ•œ class๋กœ ์ธ์‹๋˜๋„๋ก ์ ๋Œ€์  ์˜ˆ์ œ๊ฐ€ ์ƒ์„ฑ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด PGD-LL์€ ๊ณต๊ฒฉ ์ „์— ๊ฐ€์žฅ ๋‚ฎ์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜์—ˆ๋˜ class๋กœ ์ธ์‹๋˜์–ด์•ผ ํ•˜๋ฏ€๋กœ ์›๋ณธ ์ด๋ฏธ์ง€์™€ ์™„์ „ํžˆ ๋‹ค๋ฅธ class๋กœ ์ธ์‹๋˜๋„๋ก ์ƒ์„ฑ๋œ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋„คํŠธ์›Œํฌ๊ฐ€ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์›๋ณธ class๋กœ ์˜ˆ์ธกํ•˜์ง€ ์•Š์•˜๋Š”์ง€ ๋‚˜ํƒ€๋‚ด๋Š” Fooling rate๋งŒ์œผ๋กœ ์ด๋Ÿฐ ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•๋“ค์˜ ์ „์ฒด์ ์ธ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” New Label Old Rank (NLOR)๊ณผ Old Label New Rank (OLNR)๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. NLOR์€ ๊ณต๊ฒฉ ํ›„์— ์ œ์ผ ๋†’์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜๋Š” class (new label)๊ฐ€ ๊ณต๊ฒฉ ์ „์— ๋ช‡ ๋ฒˆ์งธ๋กœ ๋†’์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜์—ˆ๋Š”์ง€๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์ด๊ณ  OLNR์€ ๊ณต๊ฒฉ ์ „์— ์ œ์ผ ๋†’์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜๋˜ class(old label)๊ฐ€ ๊ณต๊ฒฉ ํ›„์— ๋ช‡ ๋ฒˆ์งธ๋กœ ๋†’์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜๋Š”์ง€๋ฅผ ๋‚˜ํƒœ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

  2. Proposed attack

4. Experiment & Result

Experimental setup

  • Dataset : NIPS 2017 adversarial competition์—์„œ ์‚ฌ์šฉ๋˜์—ˆ๋˜ ImageNet-compatible dataset 1000์žฅ ์‚ฌ์šฉ

  • Baselines : PGD-ML, PGD-CW, PGD-LL

  • Evaluation metric : Fooling Rate, NLOR, ONLR

Result

5. Conclusion

  1. ์ ๋Œ€์  ์˜ˆ์ œ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ์ง€ํ‘œ์ธ OLNR, NLOR์„ ํ†ตํ•ด ๊ธฐ์กด ์ ๋Œ€์  ๊ณต๊ฒฉ์˜ ํ•œ๊ณ„๋ฅผ ํ™•์ธํ•˜์˜€์Šต๋‹ˆ๋‹ค.

  2. ๋„คํŠธ์›Œํฌ์˜ softamx ๋˜๋Š” pre-softmax๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด ์ ๋Œ€์  ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•๋“ค๋ณด๋‹ค ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ feature๋ฅผ ์ด์šฉํ•˜๋Š” ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•์ธ FDA์˜ ๊ณต๊ฒฉ ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์‹คํ—˜์„ ํ†ตํ•ด ์ž…์ฆํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Take home message (์˜ค๋Š˜์˜ ๊ตํ›ˆ)

์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์— fature๋ฅผ ์ด์šฉํ•˜์—ฌ ์ ๋Œ€์  ๊ณต๊ฒฉ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.

Author / Reviewer information

Author

๊น€์œค์ง€ (Kim Yoonji)

  • KAIST EE

  • yoonjikim@kaist.ac.kr

  • https://github.com/yoonjii

Reviewer

  1. Korean name (English name): Affiliation / Contact information

  2. Korean name (English name): Affiliation / Contact information

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Cross entropy loss๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‹จ์ˆœํžˆ ๋„คํŠธ์›Œํฌ๊ฐ€ ์˜ˆ์ธกํ•˜๋Š” label๋งŒ ๋ฐ”๊พธ๋Š” ๋ฐฉ์‹์˜ ๊ณต๊ฒฉ์ด ์•„๋‹Œ feature๋ฅผ ๋ณ€๊ฒฝํ•˜์—ฌ ๊ณต๊ฒฉํ•˜๋Š” Feature Disruptive Attack (FDA)๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š” ํ‰๊ท ๋ณด๋‹ค ๋†’์€ ๊ฐ’์„ ๊ฐ€์ง€๋Š” feature๋Š” ํ˜„์žฌ์˜ ์˜ˆ์ธก์„ ์ง€์ง€ํ•˜๋Š” feature๋ผ๊ณ  ํŒ๋‹จํ•˜์—ฌ ํ•ด๋‹น feature์˜ ๊ฑฐ๋ฆฌ๋Š” ๊ฐ์†Œ์‹œํ‚ค๊ณ  ํ‰๊ท ๋ณด๋‹ค ๋‚ฎ์€ ๊ฐ’์„ ๊ฐ€์ง€๋Š” feature๋Š” ํ˜„์žฌ์˜ ์˜ˆ์ธก์„ ์ง€์ง€ํ•˜์ง€ ์•Š๋Š” feature๋ผ๊ณ  ํŒ๋‹จํ•˜์—ฌ ํ•ด๋‹น feature์˜ ๊ฑฐ๋ฆฌ๋Š” ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ฑฐ๋ฆฌ ํ•จ์ˆ˜๋Š” L2-norm์„ ์‚ฌ์šฉํ•˜์˜€๊ณ  ํ‰๊ท ์€ ํŠน์ • layer์—์„œ ๋ฝ‘์€ feature์˜ ํฌ๊ธฐ๊ฐ€ h x w x c๋ผ๋ฉด channel์— ๋Œ€ํ•ด ํ‰๊ท ์„ ๊ณ„์‚ฐํ•œ ๊ฒƒ์œผ๋กœ h x w์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋ฉฐ ์ด๋ฅผ Ci(h,w)C_{i}(h,w)Ciโ€‹(h,w)๋กœ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค. ์ตœ์ ํ™” ๊ณผ์ •์„ ์š”์•ฝํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์œผ๋ฉฐ ์—ฌ๊ธฐ์„œ ฮต๋Š” ์›๋ณธ ์ด๋ฏธ์ง€์™€ ์ƒ์„ฑํ•˜๋Š” ์ ๋Œ€์  ์˜ˆ์ œ์˜ ์ฐจ์ด๋ฅผ ์ œํ•œํ•˜๋Š” parameter์ž…๋‹ˆ๋‹ค.

Table 2๋Š” ๋‹ค์–‘ํ•œ ๋„คํŠธ์›Œํฌ์— ๋Œ€ํ•œ ์—ฌ๋Ÿฌ ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•๋“ค์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ ํ‘œ์ž…๋‹ˆ๋‹ค. ์ ๋Œ€์  ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅํ–ˆ์„ ๋•Œ ๋„คํŠธ์›Œํฌ๊ฐ€ ์›๋ณธ ์ด๋ฏธ์ง€์˜ class๋กœ ์ธ์‹ํ•˜์ง€ ๋ชปํ•œ ๋น„์œจ์ธ Fooling rate๋Š” ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ๋ฐฉ๋ฒ•์ด ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ์— ์ œ์ผ ๋†’์€ ๊ฐ’์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ์ง€ํ‘œ์ธ NLOR์— ๋Œ€ํ•ด์„œ๋„ ๋Œ€๋ถ€๋ถ„ ๋†’์€ ๊ฐ’์„ ๊ฐ€์ง€๋ฉฐ OLNR์€ ์ „๋ถ€ ์ œ์ผ ๋†’์€ ๊ฐ’์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋ฉด ๊ณต๊ฒฉ ์ „์— ์ œ์ผ ๋†’์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜๋˜ class๊ฐ€ ๊ณต๊ฒฉ ํ›„์—๋Š” ํ™•๋ฅ  ๊ฐ’์ด ๋งŽ์ด ๋‚ฎ์•„์ง€๊ณ  ๊ทธ์™€ ๋™์‹œ์— ๊ณต๊ฒฉ ํ›„์— ์ œ์ผ ๋†’์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜๋Š” class๊ฐ€ ๊ณต๊ฒฉ ์ „์—๋Š” ๋งŽ์ด ๋‚ฎ์€ ํ™•๋ฅ ๋กœ ์˜ˆ์ธก๋˜๋˜ class์˜€์Œ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ธฐ์กด ๊ณต๊ฒฉ ๋ฐฉ๋ฒ•๋“ค์˜ ๋ฌธ์ œ์ ์œผ๋กœ ์ œ๊ธฐ๋˜์—ˆ๋˜ ์ ๋Œ€์  ์˜ˆ์ œ๊ฐ€ ๋น„์Šทํ•œ class๋กœ ์˜ˆ์ธก๋˜๊ฑฐ๋‚˜ ๊ธฐ์กด class๋กœ ์˜ˆ์ธกํ•˜๋Š” ํ™•๋ฅ  ๊ฐ’์ด ์—ฌ์ „ํžˆ ๋†’๋‹ค๋Š” ์ ์„ ํ•ด๊ฒฐํ–ˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์™ผ์ชฝ๋ถ€ํ„ฐ ์›๋ณธ ์ด๋ฏธ์ง€, PGD๋กœ ์ƒ์„ฑํ•œ ์ ๋Œ€์  ์˜ˆ์ œ, FDA๋กœ ์ƒ์„ฑํ•œ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ํŒŒ๋„ ๊ทธ๋ฆผ์œผ๋กœ style transfer ํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. PGD๋กœ ์ƒ์„ฑํ•œ ์ ๋Œ€์  ์˜ˆ์ œ์˜ style transfer ๊ฒฐ๊ณผ๋Š” ์›๋ณธ ์ด๋ฏธ์ง€์˜ ํ˜•ํƒœ๋ฅผ ์•Œ์•„๋ณผ ์ˆ˜ ์žˆ์ง€๋งŒ FDA๋กœ ์ƒ์„ฑํ•œ ์ ๋Œ€์  ์˜ˆ์ œ์˜ style transfer ๊ฒฐ๊ณผ๋Š” ์›๋ณธ ์ด๋ฏธ์ง€์˜ ํ˜•ํƒœ๋ฅผ ์•Œ์•„๋ณด๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. cross entropy loss๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋„คํŠธ์›Œํฌ๊ฐ€ ์˜ˆ์ธกํ•˜๋Š” label๋งŒ ๋‹ฌ๋ผ์ง€๊ฒŒ ์ ๋Œ€์  ์˜ˆ์ œ๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๊ณ ์œ ํ•œ ์ •๋ณด๊ฐ€ ๋‚จ์•„์žˆ๋Š” PGD์™€ ๋‹ฌ๋ฆฌ FDA๋Š” feature ๊ฐ’์„ ๋ณ€๊ฒฝํ•˜์—ฌ ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๊ณ ์œ ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ฑฐ๋˜์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

style_transfer
table
attack_figure
Figure 1
Figure 2
Figure 4
Figure 5