📝
Awesome reviews
  • Welcome
  • Paper review
    • [2022 Spring] Paper review
      • RobustNet [Eng]
      • DPT [Kor]
      • DALL-E [Kor]
      • VRT: A Video Restoration Transformer [Kor]
      • Barbershop [Kor]
      • Barbershop [Eng]
      • REFICS [ENG]
      • Deep texture manifold [Kor]
      • SlowFast Networks [Kor]
      • SCAN [Eng]
      • DPT [Kor]
      • Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation [Kor]
      • Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation [Eng]
      • Patch Cratf : Video Denoising by Deep Modeling and Patch Matching [Eng]
      • LAFITE: Towards Language-Free Training for Text-to-Image Generation [Kor]
      • RegSeg [Eng]
      • D-NeRF [Eng]
      • SimCLR [Kor]
      • LabOR [Kor]
      • LabOR [Eng]
      • SegFormer [Kor]
      • Self-Calibrating Neural Radiance Fields [Kor]
      • Self-Calibrating Neural Radiance Fields [Eng]
      • GIRAFFE [Kor]
      • GIRAFFE [Eng]
      • DistConv [Kor]
      • SCAN [Eng]
      • slowfastnetworks [Kor]
      • Nesterov and Scale-Invariant Attack [Kor]
      • OutlierExposure [Eng]
      • TSNs [Kor]
      • TSNs [Eng]
      • Improving the Transferability of Adversarial Samples With Adversarial Transformations [Kor]
      • VOS: OOD detection by Virtual Outlier Synthesis [Kor]
      • MultitaskNeuralProcess [Kor]
      • RSLAD [Eng]
      • Deep Learning for 3D Point Cloud Understanding: A Survey [Eng]
      • BEIT [Kor]
      • Divergence-aware Federated Self-Supervised Learning [Eng]
      • NeRF-W [Kor]
      • Learning Multi-Scale Photo Exposure Correction [Eng]
      • ReActNet: Towards Precise Binary Neural Network with Generalized Activation Functions [Eng]
      • ViT [Eng]
      • CrossTransformer [Kor]
      • NeRF [Kor]
      • RegNeRF [Kor]
      • Image Inpainting with External-internal Learning and Monochromic Bottleneck [Eng]
      • CLIP-NeRF [Kor]
      • CLIP-NeRF [Eng]
      • DINO: Emerging Properties in Self-Supervised Vision Transformers [Eng]
      • DINO: Emerging Properties in Self-Supervised Vision Transformers [Kor]
      • DatasetGAN [Eng]
      • MOS [Kor]
      • MOS [Eng]
      • PlaNet [Eng]
      • MAE [Kor]
      • Fair Attribute Classification through Latent Space De-biasing [Kor]
      • Fair Attribute Classification through Latent Space De-biasing [Eng]
      • Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning [Kor]
      • PointNet [Kor]
      • PointNet [Eng]
      • MSD AT [Kor]
      • MM-TTA [Kor]
      • MM-TTA [Eng]
      • M-CAM [Eng]
      • MipNerF [Kor]
      • The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos [Eng]
      • Calibration [Eng]
      • CenterPoint [Kor]
      • YOLOX [Kor]
    • [2021 Fall] Paper review
      • DenseNet [Kor]
      • Time series as image [Kor]
      • mem3d [Kor]
      • GraSP [Kor]
      • DRLN [Kor]
      • VinVL: Revisiting Visual Representations in Vision-Language Models [Eng]
      • VinVL: Revisiting Visual Representations in Vision-Language Models [Kor]
      • NeSyXIL [Kor]
      • NeSyXIL [Eng]
      • RCAN [Kor]
      • RCAN [Eng]
      • MI-AOD [Kor]
      • MI-AOD [Eng]
      • DAFAS [Eng]
      • HyperGAN [Eng]
      • HyperGAN [Kor]
      • Scene Text Telescope: Text-focused Scene Image Super-Resolution [Eng]
      • Scene Text Telescope: Text-focused Scene Image Super-Resolution [Kor]
      • UPFlow [Eng]
      • GFP-GAN [Kor]
      • Federated Contrastive Learning [Kor]
      • Federated Contrastive Learning [Eng]
      • BGNN [Kor]
      • LP-KPN [Kor]
      • Feature Disruptive Attack [Kor]
      • Representative Interpretations [Kor]
      • Representative Interpretations [Eng]
      • Neural Discrete Representation Learning [KOR]
      • Neural Discrete Representation Learning [ENG]
      • Video Frame Interpolation via Adaptive Convolution [Kor]
      • Separation of hand motion and pose [kor]
      • pixelNeRF [Kor]
      • pixelNeRF [Eng]
      • SRResNet and SRGAN [Eng]
      • MZSR [Kor]
      • SANforSISR [Kor]
      • IPT [Kor]
      • Swin Transformer [kor]
      • CNN Cascade for Face Detection [Kor]
      • CapsNet [Kor]
      • Towards Better Generalization: Joint Depth-Pose Learning without PoseNet [Kor]
      • CSRNet [Kor]
      • ScrabbleGAN [Kor]
      • CenterTrack [Kor]
      • CenterTrack [Eng]
      • STSN [Kor]
      • STSN [Eng]
      • VL-BERT:Visual-Linguistic BERT [Kor]
      • VL-BERT:Visual-Linguistic BERT [Eng]
      • Squeeze-and-Attention Networks for Semantic segmentation [Kor]
      • Shot in the dark [Kor]
      • Noise2Self [Kor]
      • Noise2Self [Eng]
      • Dynamic Head [Kor]
      • PSPNet [Kor]
      • PSPNet [Eng]
      • CUT [Kor]
      • CLIP [Eng]
      • Local Implicit Image Function [Kor]
      • Local Implicit Image Function [Eng]
      • MetaAugment [Eng]
      • Show, Attend and Tell [Kor]
      • Transformer [Kor]
      • DETR [Eng]
      • Multimodal Versatile Network [Eng]
      • Multimodal Versatile Network [Kor]
      • BlockDrop [Kor]
      • MDETR [Kor]
      • MDETR [Eng]
      • FSCE [Kor]
      • waveletSR [Kor]
      • DAN-net [Eng]
      • Boosting Monocular Depth Estimation [Eng]
      • Progressively Complementary Network for Fisheye Image Rectification Using Appearance Flow [Kor]
      • Syn2real-generalization [Kor]
      • Syn2real-generalization [Eng]
      • GPS-Net [Kor]
      • Frustratingly Simple Few Shot Object Detection [Eng]
      • DCGAN [Kor]
      • RealSR [Kor]
      • AMP [Kor]
      • AMP [Eng]
      • RCNN [Kor]
      • MobileNet [Eng]
  • Author's note
    • [2022 Spring] Author's note
      • Pop-Out Motion [Kor]
    • [2021 Fall] Author's note
      • Standardized Max Logits [Eng]
      • Standardized Max Logits [Kor]
  • Dive into implementation
    • [2022 Spring] Implementation
      • Supervised Contrastive Replay [Kor]
      • Pose Recognition with Cascade Transformers [Eng]
    • [2021 Fall] Implementation
      • Diversity Input Method [Kor]
        • Source code
      • Diversity Input Method [Eng]
        • Source code
  • Contributors
    • [2022 Fall] Contributors
    • [2021 Fall] Contributors
  • How to contribute?
    • (Template) Paper review [Language]
    • (Template) Author's note [Language]
    • (Template) Implementation [Language]
  • KAIST AI
Powered by GitBook
On this page
  • 1. Preparing manuscript
  • Fork repository
  • Write manuscript file
  • 2. Submit manuscript
  • File structure
  • Pull request
  • 3. Peer review
  • Creating GitHub issues
  • Writing peer-review
  • 4. Submit final manuscript

Was this helpful?

How to contribute?

글 작성 안내

Previous[2021 Fall] ContributorsNext(Template) Paper review [Language]

Last updated 3 years ago

Was this helpful?

1. Preparing manuscript

이 장에서는 리뷰를 준비하는 과정을 다룹니다.

This section covers how to prepare your manuscript.

Fork repository

먼저, 를 본인의 계정으로 fork 해야 합니다. 아래 Figure 1 을 참고해 fork 하세요.

First of all, you should fork to your account. See Figure 1, and fork the repository.

Write manuscript file

Fork 이후에는 자신의 계정으로 복사된 repository 의 master 브랜치 (main 브랜치가 아닙니다) 에서 초안을 자유롭게 작성하시면 됩니다.

After you fork the repository to your account, you can freely write and edit your manuscript. Here, you should use master branch (not main branch).

자세한 작성 방법은 준비된 템플릿 파일을 참고해주세요.

Please refer to the template files for detailed guidance.

Markdown & Typora

File name

작성한 리뷰 파일의 이름은 아래의 규칙을 따라야 합니다.

File name of your manuscript should follow the rules below:

  • The file name should be a combination of the venue and the title of the paper.

  • 파일의 이름은 논문 출판 정보 (학회, 출판연도 등) 와 논문 이름의 조합으로 만들어야 합니다.

  • The file name should consist of alphanumeric (0 to 9, a to z, lower case only) and hyphen (-).

  • 숫자 / 영어 소문자 / 하이픈 (-) 만 파일명에 사용할 수 있습니다.

  • Specify the language of the article in the end of the file name.

  • 리뷰 작성 언어를 파일명 뒤에 붙여주세요.

  • Examples

Image / file upload

리뷰에 사진이나 파일을 올려야할 경우, 아래의 경로에 저장하여야 합니다.

If you want to upload images or other files, you need to save the files in the below path.

/.gitbook/assets/2022spring/<article_id>/<filename>

Description

예제 파일 맨 위를 보시면, description: 으로 시작하는 부분을 보실 수 있습니다. Figure 2 를 보시면 이것이 어떻게 쓰이는지를 확인할 수 있습니다.

예제 파일의 description 부분을 지우지 마시고, 예시와 같이 작성해주세요. 이때, 여기에는 콜론 기호 (:) 를 쓸 수 없고, 대신 하이픈 (-) 이나 세미콜론 (;) 을 사용해주세요.

When you read the top of the template files, you can find a part that starts with description:. See Figure 2, and check how this part works in the GitBook.

Do not remove the description part, and write the paper information as specified in the example. Here, you must use hyphen (-) or semicolon (;), instead of colon (:).

---
description: Choi et al. / StarGAN - Unified generative adversarial networks for multi-domain image-to-image translation / CVPR 2018
---

Equation

수식은 $ 기호 두 개 ($$)로 감싸 표현할 수 있습니다.

If you want to insert equations, you should enclose the equation with double $ ($$).

---
Newton's second law is $F=ma$. // bad
Newton's second law is $$F=ma$$. // good
---

2. Submit manuscript

이 장에서는 작성한 리뷰 초안을 제출하는 방법을 설명합니다.

This section describes how to submit your prepared manuscript.

File structure

리뷰 파일과 함께, 한 가지 파일을 더 수정해야 합니다.

Along with your manuscript file, you need to edit one more file:

/SUMMARY.md

이 파일은 전체 페이지 구조를 담고 있으며, 여기에 작성한 리뷰 파일을 등록해주어야 합니다. 파일에 써진 템플릿 파일 정보를 여러분이 작성한 초안 파일의 것으로 바꿔주시면 됩니다.

SUMMARY.md 파일을 수정하는 것 이외에, 다른 파일을 수정하거나 삭제하시면 안됩니다.

This file manages the whole page structure, and you need to register your manuscript in this file. It can be simply done by replacing information of the template file with that of your manuscript file.

Except for modifying SUMMARY.md, do not modify or remove any other files.

Example

# Table of contents

* [Welcome](README.md)

## Paper review

* [\[2022 Spring\] Paper review](paper-review/2022-fall-paper-review/README.md)
  * [Template \(paper review\)](paper-review/2022-spring-paper-review/template-paper-review.md)

...
# Table of contents

* [Welcome](README.md)

## Paper review

* [\[2022 Spring\] Paper review](paper-review/2022-fall-paper-review/README.md)
  * [RobustNet \[Kor\]](paper-review/2022-spring-paper-review/cvpr-2021-robustnet-kor.md)
  * [RobustNet \[Eng\]](paper-review/2022-spring-paper-review/cvpr-2021-robustnet-eng.md)

...

Pull request

모든 준비가 끝나면, Figure 2 와 같이 pull request 기능을 이용해 초안을 제출합니다.

When your draft is ready, submit your work by using pull request (see Figure 2).

Pull request 는 학기별로 정해지는 수업용 브랜치에 보내야 합니다. (e.g., 2022년 봄학기: 2022-submission-submission) 이때, 절대로 master 브랜치에 pull request 를 보내면 안됩니다!!!

You should create pull request to the class branch (e.g., 2022-submission-submission for the 2022 spring semester). WARNING: Do not send pull request to the master branch!!!

3. Peer review

정확한 정보를 전달하기 위해, 모든 리뷰는 서로간의 동료 평가를 거칠 예정입니다. 우리는 GitHub issues 기능을 활용하여 동료 평가를 진행할 겁니다.

In order to deliver accurate information, all articles will be peer-reviewed by each other. Basically, we will use GitHub issues for peer-review

Creating GitHub issues

Figure 4 를 보고, 자신이 작성한 초안에 대한 이슈를 생성해주세요. 리뷰를 해야 하는 논문의 이슈가 아직 만들어지지 않았다면, 리뷰어가 직접 만드셔도 됩니다. 리뷰를 여러 언어로 작성하셨더라도 하나의 이슈만 만드시면 됩니다.

See Figure 4, and create an issue for your manuscript! If the issue of review-assigned paper is not created yet, reviewers also can make it. You don't need to create multiple issues even if you wrote the manuscript in multiple languages.

Title of issues

생성할 이슈의 이름은 아래의 규칙을 따라야 합니다.

Name of your issue should follow the rules below:

  • The name should be a combination of the semester, the venue and the title of the paper you reviewed, and student ID of an article writer.

  • 이슈의 이름은 학기, 리뷰한 논문 출판 정보 및 이름, 그리고 리뷰를 작성한 사람의 학번 조합으로 만들어야 합니다.

  • Examples

    • [2021 fall] CVPR 2021 RobustNet (20209999)

    • [2021 fall] ICCV 2021 BiaSwap (20197777)

    • [2022 spring] CVPR 2025 BigBigModel (20231234)

    • ...

Initial / first comment

자신의 초안에서 중점적으로 평가받고 싶은 점이 있다면, 생성할 이슈의 첫 커멘트로 적어주세요. 특별한 사항이 없으면, 커멘트를 비워두셔도 됩니다.

동료 평가자가 외국인 학생일 수 있으므로, 되도록 영어를 사용해주세요.

If there are topics you want to focus on in peer-review, please write them in the first comment of the issue to be created. You can leave the comment blank when you have no special concerns.

The peer-reviewer of your manuscript could be an international student, so we recommend you to use the English.

Writing peer-review

따로 정해진 동료 평가 양식은 없습니다. 리뷰하는 초안에 대한 의견을 자유롭게 적어주세요.

초안 작성자가 한국인이라면, 한국어로 논의하셔도 상관 없습니다.

There is no specific template for peer-review. Feel free to write your opinions about the manuscript.

If the author of the review is Korean, you can communicate in the Korean language.

Discussion points

  • Typos

  • Additional references

  • Opinions or questions about the article

  • Contents wanted to be added or removed

  • Correcting wrong information

  • Correcting omitted parts of the template (e.g., reference, author information, ...)

4. Submit final manuscript

최종 제출 전, 아래 사항을 꼭 확인해주세요!

Before you submit the final manuscript, please double check the list below:

Checklist

  • Did you check that the images and equations in your article are rendered well?

  • Did you check that the files (images, manuscript) are located in the proper directories?

  • Did you write Take home message (오늘의 교훈), Author information, Reference sections in your manuscript?

  • Did you reflect on the Peer reviews written by other students?

  • Do not change Reviewer information section in your manuscript (TA will edit this section).

여러분의 초안은 markdown 형식 (*.md) 으로 작성되어야 합니다. Markdown 을 처음 사용하시는 분은 에서 사용법을 배워보세요.

Your manuscript should be written in markdown (*.md) format. If you are not familiar with markdown, see this .

추가로 라는 markdown 용 WYSIWYG 편집기를 사용하시면, 편하게 초안을 작성할 수 있습니다.

You can use , which is a WYSIWYG markdown editor for your convenience.

cvpr-2021-robustnet-kor.md ()

cvpr-2021-robustnet-eng.md ()

iccv-2021-biaswap-kor.md ()

iccv-2021-sml-eng.md ()

Paper review / Author's note
Dive into implementation
링크
tutorial
Typora
Typora
paper
paper
paper
paper
이 프로젝트 GitHub repository
this GitHub repository
Figure 1: Fork repository (top right, red box)
Figure 2: How description part works in GitBook?
Figure 3: Pull request (new pull request → select branch → create pull request)
Figure 4: Creating issues