πŸ“
Awesome reviews
  • Welcome
  • Paper review
    • [2022 Spring] Paper review
      • RobustNet [Eng]
      • DPT [Kor]
      • DALL-E [Kor]
      • VRT: A Video Restoration Transformer [Kor]
      • Barbershop [Kor]
      • Barbershop [Eng]
      • REFICS [ENG]
      • Deep texture manifold [Kor]
      • SlowFast Networks [Kor]
      • SCAN [Eng]
      • DPT [Kor]
      • Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation [Kor]
      • Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation [Eng]
      • Patch Cratf : Video Denoising by Deep Modeling and Patch Matching [Eng]
      • LAFITE: Towards Language-Free Training for Text-to-Image Generation [Kor]
      • RegSeg [Eng]
      • D-NeRF [Eng]
      • SimCLR [Kor]
      • LabOR [Kor]
      • LabOR [Eng]
      • SegFormer [Kor]
      • Self-Calibrating Neural Radiance Fields [Kor]
      • Self-Calibrating Neural Radiance Fields [Eng]
      • GIRAFFE [Kor]
      • GIRAFFE [Eng]
      • DistConv [Kor]
      • SCAN [Eng]
      • slowfastnetworks [Kor]
      • Nesterov and Scale-Invariant Attack [Kor]
      • OutlierExposure [Eng]
      • TSNs [Kor]
      • TSNs [Eng]
      • Improving the Transferability of Adversarial Samples With Adversarial Transformations [Kor]
      • VOS: OOD detection by Virtual Outlier Synthesis [Kor]
      • MultitaskNeuralProcess [Kor]
      • RSLAD [Eng]
      • Deep Learning for 3D Point Cloud Understanding: A Survey [Eng]
      • BEIT [Kor]
      • Divergence-aware Federated Self-Supervised Learning [Eng]
      • NeRF-W [Kor]
      • Learning Multi-Scale Photo Exposure Correction [Eng]
      • ReActNet: Towards Precise Binary Neural Network with Generalized Activation Functions [Eng]
      • ViT [Eng]
      • CrossTransformer [Kor]
      • NeRF [Kor]
      • RegNeRF [Kor]
      • Image Inpainting with External-internal Learning and Monochromic Bottleneck [Eng]
      • CLIP-NeRF [Kor]
      • CLIP-NeRF [Eng]
      • DINO: Emerging Properties in Self-Supervised Vision Transformers [Eng]
      • DINO: Emerging Properties in Self-Supervised Vision Transformers [Kor]
      • DatasetGAN [Eng]
      • MOS [Kor]
      • MOS [Eng]
      • PlaNet [Eng]
      • MAE [Kor]
      • Fair Attribute Classification through Latent Space De-biasing [Kor]
      • Fair Attribute Classification through Latent Space De-biasing [Eng]
      • Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning [Kor]
      • PointNet [Kor]
      • PointNet [Eng]
      • MSD AT [Kor]
      • MM-TTA [Kor]
      • MM-TTA [Eng]
      • M-CAM [Eng]
      • MipNerF [Kor]
      • The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos [Eng]
      • Calibration [Eng]
      • CenterPoint [Kor]
      • YOLOX [Kor]
    • [2021 Fall] Paper review
      • DenseNet [Kor]
      • Time series as image [Kor]
      • mem3d [Kor]
      • GraSP [Kor]
      • DRLN [Kor]
      • VinVL: Revisiting Visual Representations in Vision-Language Models [Eng]
      • VinVL: Revisiting Visual Representations in Vision-Language Models [Kor]
      • NeSyXIL [Kor]
      • NeSyXIL [Eng]
      • RCAN [Kor]
      • RCAN [Eng]
      • MI-AOD [Kor]
      • MI-AOD [Eng]
      • DAFAS [Eng]
      • HyperGAN [Eng]
      • HyperGAN [Kor]
      • Scene Text Telescope: Text-focused Scene Image Super-Resolution [Eng]
      • Scene Text Telescope: Text-focused Scene Image Super-Resolution [Kor]
      • UPFlow [Eng]
      • GFP-GAN [Kor]
      • Federated Contrastive Learning [Kor]
      • Federated Contrastive Learning [Eng]
      • BGNN [Kor]
      • LP-KPN [Kor]
      • Feature Disruptive Attack [Kor]
      • Representative Interpretations [Kor]
      • Representative Interpretations [Eng]
      • Neural Discrete Representation Learning [KOR]
      • Neural Discrete Representation Learning [ENG]
      • Video Frame Interpolation via Adaptive Convolution [Kor]
      • Separation of hand motion and pose [kor]
      • pixelNeRF [Kor]
      • pixelNeRF [Eng]
      • SRResNet and SRGAN [Eng]
      • MZSR [Kor]
      • SANforSISR [Kor]
      • IPT [Kor]
      • Swin Transformer [kor]
      • CNN Cascade for Face Detection [Kor]
      • CapsNet [Kor]
      • Towards Better Generalization: Joint Depth-Pose Learning without PoseNet [Kor]
      • CSRNet [Kor]
      • ScrabbleGAN [Kor]
      • CenterTrack [Kor]
      • CenterTrack [Eng]
      • STSN [Kor]
      • STSN [Eng]
      • VL-BERT:Visual-Linguistic BERT [Kor]
      • VL-BERT:Visual-Linguistic BERT [Eng]
      • Squeeze-and-Attention Networks for Semantic segmentation [Kor]
      • Shot in the dark [Kor]
      • Noise2Self [Kor]
      • Noise2Self [Eng]
      • Dynamic Head [Kor]
      • PSPNet [Kor]
      • PSPNet [Eng]
      • CUT [Kor]
      • CLIP [Eng]
      • Local Implicit Image Function [Kor]
      • Local Implicit Image Function [Eng]
      • MetaAugment [Eng]
      • Show, Attend and Tell [Kor]
      • Transformer [Kor]
      • DETR [Eng]
      • Multimodal Versatile Network [Eng]
      • Multimodal Versatile Network [Kor]
      • BlockDrop [Kor]
      • MDETR [Kor]
      • MDETR [Eng]
      • FSCE [Kor]
      • waveletSR [Kor]
      • DAN-net [Eng]
      • Boosting Monocular Depth Estimation [Eng]
      • Progressively Complementary Network for Fisheye Image Rectification Using Appearance Flow [Kor]
      • Syn2real-generalization [Kor]
      • Syn2real-generalization [Eng]
      • GPS-Net [Kor]
      • Frustratingly Simple Few Shot Object Detection [Eng]
      • DCGAN [Kor]
      • RealSR [Kor]
      • AMP [Kor]
      • AMP [Eng]
      • RCNN [Kor]
      • MobileNet [Eng]
  • Author's note
    • [2022 Spring] Author's note
      • Pop-Out Motion [Kor]
    • [2021 Fall] Author's note
      • Standardized Max Logits [Eng]
      • Standardized Max Logits [Kor]
  • Dive into implementation
    • [2022 Spring] Implementation
      • Supervised Contrastive Replay [Kor]
      • Pose Recognition with Cascade Transformers [Eng]
    • [2021 Fall] Implementation
      • Diversity Input Method [Kor]
        • Source code
      • Diversity Input Method [Eng]
        • Source code
  • Contributors
    • [2022 Fall] Contributors
    • [2021 Fall] Contributors
  • How to contribute?
    • (Template) Paper review [Language]
    • (Template) Author's note [Language]
    • (Template) Implementation [Language]
  • KAIST AI
Powered by GitBook
On this page
  • 1. Problem definition
  • 2. Motivation
  • Related work
  • Idea
  • 3. Method
  • λͺ¨λΈ ꡬ쑰
  • ν•™μŠ΅
  • 4. Experiment & Result
  • Experimental setup
  • Result
  • 5. Conclusion
  • Take home message
  • Author / Reviewer information
  • Author
  • Reviewer
  • Reference & Additional materials

Was this helpful?

  1. Paper review
  2. [2021 Fall] Paper review

Time series as image [Kor]

Hatami et al. / Classification of Time-Series Images Using Deep Convolutional Neural Networks / ICMV 2017

1. Problem definition

이 λ…Όλ¬Έμ—μ„œ λ‹€λ£¨λŠ” 주된 λ¬Έμ œλŠ” μ‹œκ³„μ—΄ λΆ„λ₯˜ (Time-series Classification) μž…λ‹ˆλ‹€. λ‹¨λ³€λŸ‰ μ‹œκ³„μ—΄μ˜ 경우, λͺ¨λΈμ€ x=(x1,β€…β€Š...,β€…β€Šxl)x = (x_1,\; ...,\; x_l)x=(x1​,...,xl​) λ₯Ό μž…λ ₯λ°›μ•„ ν•΄λ‹Ή μ‹œκ³„μ—΄μ„ NNN개의 μΉ΄ν…Œκ³ λ¦¬ y∈(c1,...,cN)y \in (c_1, ... , c_N)y∈(c1​,...,cN​) 쀑 ν•˜λ‚˜λ‘œ λΆ„λ₯˜ν•˜κ²Œ 되며 xβ†’yx \rightarrow yxβ†’y 의 ν•¨μˆ˜λ₯Ό ν•™μŠ΅ν•˜κ²Œλ©λ‹ˆλ‹€. ν•™μŠ΅λœ λͺ¨λΈμ€ ν•™μŠ΅ν•˜μ§€ μ•Šμ€ μ‹œκ³„μ—΄μ— λŒ€ν•΄ μΉ΄ν…Œκ³ λ¦¬ λΆ„λ₯˜κ°€ μž˜λ˜λŠ” μΌλ°˜ν™”λœ λͺ¨λΈλ§μ„ λͺ©ν‘œλ‘œ ν•©λ‹ˆλ‹€.

2. Motivation

Convolutional Neural Networks (CNN)은 κ²ŒμΈ΅ν™”λœ νŠΉμ§•ν‘œν˜„μ„ ν†΅ν•˜μ—¬ 이미지 λΆ„λ₯˜ 및 인식 λ¬Έμ œμ—μ„œ μ—„μ²­λ‚œ μ„±λŠ₯ν–₯상을 λ³΄μ˜€μŠ΅λ‹ˆλ‹€. μ΄λŸ¬ν•œ 성곡은 λ‹€λ₯Έ μ—¬λŸ¬ λ¬Έμ œλ“€μ—λ„ μ μš©λ˜μ–΄ λ§Žμ€ λ°œμ „μ„ μ΄λ£¨μ—ˆμ§€λ§Œ, μ‹œκ³„μ—΄μ˜ 경우 일반적으둜 1μ°¨μ›μ˜ μ‹ ν˜Έλ‘œ κ°„μ£Όν•˜κΈ°μ— 적용이 쉽지 μ•Šμ•˜μŠ΅λ‹ˆλ‹€. 이λ₯Ό μœ„ν•΄ 1차원 ν•©μ„±κ³± μ—°μ‚°λ₯Ό μ‚¬μš©ν•˜κΈ°λ„ ν•˜μ§€λ§Œ 이 λ…Όλ¬Έμ—μ„œλŠ” 1차원 μ‹ ν˜Έλ₯Ό 2μ°¨μ›μ˜ 이미지 Recurrence Plot (RP)둜 λ³€ν™˜ν•˜κ³  2차원 합성곱연산을 μ˜¨μ „νžˆ ν™œμš©ν•˜κ³ μž ν•©λ‹ˆλ‹€.

Related work

리뷰λ₯Ό ν•˜λŠ” 2021λ…„ μ‹œμ μ—μ„œ CNN의 μž₯단점, λ™μž‘κ³Ό λ‹€μ–‘ν•œ ꡬ쑰에 λŒ€ν•΄μ„œλŠ” λ§Žμ€ 연ꡬ가 μžˆμ—ˆκ³  잘 μ•Œλ €μ Έ μžˆμŠ΅λ‹ˆλ‹€. λ•Œλ¬Έμ— 이 논문을 μ΄ν•΄ν•˜κΈ° μœ„ν•΄μ„  RP에 λŒ€ν•œ 이해가 μ£Όκ°€ λ©λ‹ˆλ‹€. RPλŠ” μ‹œκ°ν™” λ„κ΅¬λ‘œμ„œ Mμ°¨μ›μ˜ 변화양상 탐색을 λͺ©ν‘œλ‘œ ν•˜λ©° 2μ°¨μ›μ˜ ν–‰λ ¬λ‘œ ν‘œν˜„λ©λ‹ˆλ‹€. μ–΄λ–€ μ‹œκ³„μ—΄μ΄ μ£Όμ–΄μ‘Œμ„λ•Œ 이 행렬은 λ‹€μŒκ³Ό 같이 μ •μ˜λ©λ‹ˆλ‹€.

x=(x1,β€…β€Š...,β€…β€Šxl),β€…β€Šβ€…β€Šxi∈Rx = (x_1,\; ...,\; x_l),\;\; x_i \in \mathrm{R}x=(x1​,...,xl​),xiβ€‹βˆˆR
s=(s1βƒ—,β€…β€Šs2βƒ—,β€…β€Š...,β€…β€Šslβˆ’1βƒ—)=(s12,β€…β€Šs23...,β€…β€Šslβˆ’1,l)β€…β€Šβ€…β€Šβ€…β€Šwhereβ€…β€Šsiβˆ’1,i=(xiβˆ’1,xi)s = (\vec{s_1},\;\vec{s_2},\;...,\;\vec{s_{l-1}} ) = (s_{12},\;s_{23} ...,\; s_{l-1, l}) \;\;\; \text{where}\; s_{i-1,i} = (x_{i-1}, x_{i})\\s=(s1​​,s2​​,...,slβˆ’1​​)=(s12​,s23​...,slβˆ’1,l​)wheresiβˆ’1,i​=(xiβˆ’1​,xi​)
Ri,j=ΞΈ(Ο΅βˆ’βˆ₯sβƒ—iβˆ’sβƒ—jβˆ₯),sβƒ—(.)βˆˆβ„œm,i,j=1,…,KR_{\mathrm{i}, \mathrm{j}}=\theta\left(\epsilon-\left\|\vec{s}_{i}-\vec{s}_{j}\right\|\right), \quad \vec{s}(.) \in \Re^{m}, \quad i, j=1, \ldots, KRi,j​=ΞΈ(Ο΅βˆ’βˆ₯siβ€‹βˆ’sj​βˆ₯),s(.)βˆˆβ„œm,i,j=1,…,K

lll길이의 μ‹œκ³„μ—΄ xxxμ—μ„œ 곡간ꢀ도 sis_isiβ€‹λŠ” 각 xix_{i}xi​와 xi+1x_{i+1}xi+1β€‹λ‘œ 이루어진 2차원 λ²‘ν„°λ‘œ μ •μ˜λ˜κ³  RP RRRν–‰λ ¬μ˜ 각 μš”μ†ŒλŠ” 이 곡간ꢀ도 sssκ°„μ˜ μ°¨κ°€μž…λ ₯으둜 μ£Όμ–΄μ‘Œμ„λ•Œ λ‹¨μœ„ 계단 ν•¨μˆ˜(Heaviside function)의 좜λ ₯으둜 μ •μ˜λ©λ‹ˆλ‹€. 이 λ•Œ μ—­μΉ˜κ°’ μ΄ν•˜μΈ 경우 1둜 ν™œμ„±ν™”λ©λ‹ˆλ‹€. μ—¬κΈ°μ„œ λ‹¨μœ„ 계단 ν•¨μˆ˜λŠ” 연속적인 κ°’λ³€ν™”λ₯Ό μ΄μ‚°ν™”ν•˜κ³  μ΄λ•Œ 엑싀둠은 μ‹œκ³„μ—΄μ˜ μž‘μŒμ„ λ¬΄μ‹œν•˜λŠ” 정도λ₯Ό κ²°μ •ν•˜κ²Œ λ©λ‹ˆλ‹€.

μ΄λ ‡κ²Œ λ³€ν™˜λœ RPλŠ” μ‹œκ³„μ—΄ 데이터가 κ°€μ§„ 주기성등을 μ‹œκ°μ  νŒ¨ν„΄μœΌλ‘œ λ³΄μ—¬μ€λ‹ˆλ‹€.

μœ„ κ·Έλ¦Όμ—μ„œ μ μƒ‰μΌμˆ˜λ‘ κΆ€λ„κ°„μ˜ 차이가 크며 μ–΄λ‘μš΄ μ²­μƒ‰μΌμˆ˜λ‘ κ·Έ 차이가 μž‘κ²Œ ν‘œν˜„λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€. λŒ€ν‘œμ μΈ μ‹œκ°μ  νŒ¨ν„΄μ„ μ‚΄νŽ΄λ³΄λ©΄

  • RP ν–‰λ ¬μ˜ λŒ€κ°μ„±λΆ„μ€ ꢀ도 μžμ‹ κ³Όμ˜ 차이기에 항상 0으둜 μ–΄λ‘μš΄μ²­μƒ‰μœΌλ‘œ ν‘œν˜„λ©λ‹ˆλ‹€.

  • λŒ€κ° 성뢄을 κΈ°μ€€μœΌλ‘œ μš°μƒκ³Ό μ’Œν•˜λ‹¨μ€ λŒ€μΉ­μ μž…λ‹ˆλ‹€.

  • νŠΉμ • μœ„μΉ˜μ—μ„œ μˆ˜ν‰ ν˜Ήμ€ 수직으둜 길게 λ‚˜νƒ€λ‚œ 적색선은 ν•΄λ‹Ή μœ„μΉ˜μ—μ„œ λ‹€λ₯Έ λͺ¨λ“  μœ„μΉ˜μ™€ μˆ˜μ€€μ΄ λ‹€λ₯Έ λ³€ν™” (μƒμŠΉκ³Ό ν•˜λ½)κ°€ ν‘œν˜„λ©λ‹ˆλ‹€.

  • μš°μƒλ‹¨μ˜ 적색은 κ°€κΉŒμš΄ μ‹œκ°„λ‚΄μ˜ κΆ€λ„κ°„μ˜ 차이가 μ‹¬ν•˜λ‹€λŠ”κ²ƒμ„ μ˜λ―Έν•˜λ©° μš°ν•˜λ‹¨μ€ μ‹œκ°„μ μœΌλ‘œ λ¨Ό κΆ€λ„κ°„μ˜ 차이가 심함을 λ‚˜νƒ€λ‚΄κ²Œ λ©λ‹ˆλ‹€.

  • λ‘λ²ˆμ§Έ 그럼처럼 μ’Œμƒλ‹¨μ—μ„œ μš°ν•˜λ‹¨μœΌλ‘œ 적색 λŒ€κ°μ„ μ€ μ‹œκ°„μ˜ 흐름에 따라 ꢀ도가 λ°˜λŒ€μΌ κ²½μš°μž…λ‹ˆλ‹€.

  • 같은 λͺ¨μ–‘이 μ‹œκ°„μΆ•μ‚¬μ΄μ— 반볡되면 ν•΄λ‹Ή νŒ¨ν„΄μ˜ 주기성을 μ˜λ―Έν•©λ‹ˆλ‹€.

이처럼 RPλŠ” μ‹œκ³„μ—΄λ‚΄μ— λ³΄μ΄λŠ” μ—¬λŸ¬ 동적인 변화듀을 μ‹œκ°μ μΈ νŒ¨ν„΄μœΌλ‘œ ν‘œν˜„κ°€λŠ₯ν•©λ‹ˆλ‹€.

Idea

μ΄λŸ¬ν•œ RP와 CNN이 결합은 λ‹€μ–‘ν•œ νŒ¨ν„΄μ„ λͺ¨λΈλ§ κ°€λŠ₯ν•©λ‹ˆλ‹€. 예λ₯Ό λ“€μ–΄, CNN은 μ–΄λ–€ μ΄λ―Έμ§€μ•ˆμ—μ„œ 객체의 곡간적 이동변화에 λŒ€ν•΄ λ¬΄κ΄€ν•˜κ²Œ 객체의 μ‘΄μž¬μ—¬λΆ€λ₯Ό μ•Œμˆ˜ μžˆμŠ΅λ‹ˆλ‹€. μ΄λŸ¬ν•œ νŠΉμ§•μ€ μ‹œκ³„μ—΄μ—μ„œ νŠΉμ •νŒ¨ν„΄μ΄ μ„œλ‘œ λ‹€λ₯Έ μ‹œκ°„μ— μ‘΄μž¬ν• λ•Œ μ‹œκ°„ 변화에 λ¬΄κ΄€ν•˜κ²Œ 탐지가λŠ₯ν•©λ‹ˆλ‹€. μ΄λŠ” μ‹œκ³„μ—΄ λΆ„λ₯˜μ—μ„œ μ„±λŠ₯을 높일 수 μžˆλŠ” μš”μ†Œκ°€ 될수 μžˆμŠ΅λ‹ˆλ‹€.

3. Method

RPλ₯Ό μ΄ν•΄ν•˜κ³  λ‚˜λ©΄ κ·Έμ™Έ λ‚˜λ¨Έμ§€λŠ” λ‹¨μˆœν•œ μ…‹νŒ…μ μΈ 뢀뢄에 λΆˆκ³Όν•©λ‹ˆλ‹€.

λͺ¨λΈ ꡬ쑰

λ¨Όμ € λ…Όλ¬Έμ—μ„œ μ œμ‹œν•œ λͺ¨λΈ ꡬ쑰에 λŒ€ν•΄μ„œ 보면 2측의 ν•©μ„±κ³± 블둝을 μ‚¬μš©ν•©λ‹ˆλ‹€. ν•œ 측은 ν•©μ„±κ³± μ—°μ‚°, 톡합측, λΉ„μ„ ν˜• ν™œμ„±ν•¨μˆ˜κ°€ 순차적으둜 κ΅¬μ„±λ˜μ–΄μžˆμŠ΅λ‹ˆλ‹€. 각 μ‹œκ³„μ—΄λ°μ΄ν„°κ°€ RP둜 λ³€ν™˜λ˜μ–΄ 2κ³„μΈ΅μ˜ 합성곱을 ν†΅κ³Όν•˜κ³  λ‚˜λ©΄ λ§ˆμ§€λ§‰ 측의 μ±„λ„μ‚¬μ΄μ¦ˆ 크기의 μž μž¬λ³€μˆ˜ 곡간에 λ§΅ν•‘λ˜κ²Œ 되고 μ΄ν›„μ—λŠ” μ™„μ „μ—°κ²° 2계측을 톡해 λΆ„λ₯˜λ₯Ό μœ„ν•œ 결정경계λ₯Ό 배우게 λ©λ‹ˆλ‹€.

ν•™μŠ΅

ν•™μŠ΅μ€ μ—­μ „νŒŒ μ•Œκ³ λ¦¬μ¦˜μ„ 톡해 λͺ¨λΈμ˜ νŒŒλΌλ―Έν„°λ₯Ό κ°±μ‹ ν•©λ‹ˆλ‹€. μ΄λ•Œ μ†μ‹€ν•¨μˆ˜λ‘œμ„œ categorical-crossentropyλ₯Ό μ‚¬μš©ν•˜κ²Œ 되고 μ΅œμ ν™” μ•Œκ³ λ¦¬μ¦˜μ€ Adam을 μ‚¬μš©ν•©λ‹ˆλ‹€. λͺ¨λΈμ˜ μΌλ°˜ν™”μ„±λŠ₯ 평가λ₯Ό μœ„ν•΄ ν•™μŠ΅μ…‹, μœ νš¨μ…‹ 그리고 ν‰κ°€μ…‹μœΌλ‘œ 데이터λ₯Ό λΆ„ν• ν•˜κ³  μœ νš¨μ…‹μ—μ„œ μ΅œλŒ€μ„±λŠ₯이 λ‚˜μ˜¬λ•Œμ˜ λͺ¨λΈ νŒŒλΌλ―Έν„°μ™€ ν•˜μ΄νΌ νŒŒλΌλ―Έν„°λ‘œ κ³ μ •ν•˜κ³  평가셋에 λŒ€ν•΄ μ„±λŠ₯을 μΈ‘μ •ν•˜μ—¬ λΉ„κ΅ν•©λ‹ˆλ‹€.

4. Experiment & Result

μ‹€ν—˜ λ‹¨λ½μ—μ„œλŠ” λ…Όλ¬Έμ—μ„œ λͺ¨λΈμ˜ ν‰κ°€ν•œ 데이터셋, λΆ„λ₯˜ μ„±λŠ₯, 그리고 ν•™μŠ΅λœ λͺ¨λΈμ˜ ν•„ν„°μ˜ μ‹œκ°ν™” RP의 연관성에 λŒ€ν•΄μ„œ λ‹€λ£Ήλ‹ˆλ‹€.

Experimental setup

λ…Όλ¬Έμ—μ„œλŠ” UCR μ‹œκ³„μ—΄ λΆ„λ₯˜ 데이터셋을 μ‚¬μš©ν–ˆμŠ΅λ‹ˆλ‹€. UCR 데이터셋은 μ„œλ‘œλ‹€λ₯Έ 85개의 μ‹œκ³„μ—΄ λ°μ΄ν„°μ…‹μœΌλ‘œ 이루어져 있으며 각각은 μ‹œκ³„μ—΄ λ°μ΄ν„°μ˜ 길이, λΆ„λ₯˜λ˜λŠ” 수, 그리고 μ‹œκ³„μ—΄μ˜ 도메인이 μƒμ΄ν•©λ‹ˆλ‹€. 이 쀑 20개의 μ‹œκ³„μ—΄ 데이터셋에 λŒ€ν•΄ ν‰κ°€ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

μ„±λŠ₯ 비ꡐλ₯Ό μœ„ν•œ 방법둠과 μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ 1-NN DTW, Shapelet, Bop, SAX-VSM, TFRP, MCNN, 그리고 GAF-MTF κΉŒμ§€ 7κ°œμ™€ μ œμ•ˆλœ λͺ¨λΈμ„ λΉ„κ΅ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

비ꡐ λ°©λ²•μœΌλ‘œ λ¨Όμ € 각 데이터 셋에 λŒ€ν•΄μ—¬ λͺ¨λΈλ“€μ˜ μ˜€μ°¨μœ¨μ„ κ΅¬ν•˜κ³  μ˜€μ°¨μœ¨μ— λ”°λΌμ„œ μˆœμœ„λ₯Ό λ‚˜μ—΄ν•˜κ³  μ΄λ•Œ 20개 λ°μ΄ν„°μ…‹μ—μ„œ 평균적인 μˆœμœ„μ™€ 1등인 κ²½μš°μ— λŒ€ν•΄μ„œ λ³΄κ³ ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

Result

μœ„ ν‘œλŠ” 20개 λ°μ΄ν„°μ…‹μ—μ„œ 7개의 비ꡐ λͺ¨λΈκ³Όμ˜ μ‹€ν—˜ 결과이며 μ œμ•ˆν•œ λͺ¨λΈμ΄ 평균적인 μˆœμœ„μ™€ 승리 νšŸμˆ˜μƒμœΌλ‘œ κ°€μž₯ μš°μˆ˜ν•¨μ„ μ£Όμž₯ν•©λ‹ˆλ‹€.

κ·Έλ¦Ό 4μ—μ„œ 두 ν•©μ„±κ³± λΈ”λŸ­μ˜ ν•™μŠ΅λœ 필터듀을 μ‹œκ°ν™”ν•˜μ—¬ μ œμ‹œν•˜κ³  있으며 3 x 3 ν•„ν„°λ₯Ό μ‚¬μš©ν•¨μœΌλ‘œ μ΅œλŒ€ 길이 5의 νŒ¨ν„΄μ„ ν™œμ„±κ°€λŠ₯ν•©λ‹ˆλ‹€. 이 μ‹œκ°ν™”λ₯Ό ν†΅ν•΄μ„œ μ‹€μ œλ‘œ RPμ—μ„œ μ–΄λ–€ νŒ¨ν„΄μ„ μ°ΎλŠ” 필터인지 μ—°κ²°κ°€λŠ₯ν•˜λ©° 1차원 μ‹ ν˜Έλ₯Ό ν•™μŠ΅ν• λ•Œμ— λΉ„ν•΄ μ„€λͺ…κ°€λŠ₯ν•œ μž₯점이 μžˆμŠ΅λ‹ˆλ‹€.

5. Conclusion

λ³Έ λ…Όλ¬Έμ—μ„œλŠ” 성곡적인 κ²°κ³Όλ₯Ό λ³΄μ΄λŠ” ν•©μ„±κ³± μ‹ κ²½λ§μ˜ 효과λ₯Ό μ‹œκ³„μ—΄ λΆ„λ₯˜μ—μ„œ μ΄μš©ν•˜κΈ° μœ„ν•΄ 1차원 μ‹ ν˜ΈμΈ μ‹œκ³„μ—΄ 데이터λ₯Ό μœ„μƒμ •λ³΄λ₯Ό λ°˜μ˜ν•˜λŠ” 2차원 RP ν–‰λ ¬λ‘œ λ³€ν™˜ν•˜μ˜€μŠ΅λ‹ˆλ‹€. 1차원 μ‹ ν˜Έμ—μ„œ μœ μ‚¬ν•œ νŒ¨ν„΄μ˜ 정렬을 ν•˜λŠ”κ²ƒμ€ μ–΄λ €μš΄ λ¬Έμ œμ΄λ‚˜ RP와 ν•©μ„±κ³±μ‹ κ²½λ§μ˜ μ‹œκ°„ λΆˆλ³€μ˜ νŠΉμ„±μ„ κ²°ν•©ν•˜μ—¬ μœ μ‚¬νŒ¨ν„΄μ˜ μ •λ ¬λ¬Έμ œμ— λŒ€ν•΄ μ–΄λŠμ •λ„ ν•΄κ²°κ°€λŠ₯ν•œκ²ƒμœΌλ‘œ λ³΄μž…λ‹ˆλ‹€. μ‹€ν—˜μ μ¦λͺ…μœΌλ‘œμ„œ 기쑴의 1차원 μ‹ ν˜Έλ‘œμ„œ μ‹œκ³„μ—΄μ„ ν‘œν˜„ν• λ•Œ 보닀 μ‹œκ³„μ—΄ λΆ„λ₯˜ λ¬Έμ œμ—μ„œ 높은 μ„±λŠ₯ ν–₯상을 λ³΄μ—¬μ£Όμ—ˆμŠ΅λ‹ˆλ‹€.

Take home message

2021λ…„ μ‹œμ μ— 2017의 논문이 λ‹€μ†Œ κ°„λ‹¨ν•˜κ³  λ‚˜μ΄λΈŒ ν• μˆ˜ μžˆμ§€λ§Œ 제좜된 ν•™νšŒμ˜ 인지도에 λΉ„ν•΄ ν˜„μž¬ 인용수 208회둜 높은것을 볼수 μžˆμŠ΅λ‹ˆλ‹€. 이 뢀뢄은 1차원 μ‹ ν˜Έλ‘œ μ΅μˆœν•œ μ‹œκ³„μ—΄ 데이터λ₯Ό 2차원 ν‘œν˜„μœΌλ‘œ λ³€ν™˜ν•˜λŠ” 아이디어 μžμ²΄μ— μƒˆλ‘œμ›€ 떄문이 μ•„λ‹κΉŒ μƒκ°ν•©λ‹ˆλ‹€.

Author / Reviewer information

Author

λ°•μ€€μš° (Junwoo Park)

  • KAIST AI

Reviewer

  1. Korean name (English name): Affiliation / Contact information

  2. Korean name (English name): Affiliation / Contact information

  3. ...

Reference & Additional materials

  1. Hatami, Nima, Yann Gavet, and Johan Debayle. "Classification of time-series images using deep convolutional neural networks." Tenth international conference on machine vision (ICMV 2017). Vol. 10696. International Society for Optics and Photonics, 2018.

PreviousDenseNet [Kor]Nextmem3d [Kor]

Last updated 3 years ago

Was this helpful?

image
image
image
image

Github
Recurrence plot with python: νŒŒμ΄μ¬μ—μ„œ RP ν™œμš©ν•˜κΈ°