## DI-FGSM : DIFGSM.py
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision.transforms import InterpolationMode
import torchgeometry as tgm
from attack import Attack
class DIFGSM(Attack):
def __init__(self, model, eps=8/255, alpha=2/255, steps=20, di_pad_amount=31, di_prob=0.5):
super().__init__("DIFGSM", model)
self.eps = eps # Maximum change in one pixel for total step (range 0-255)
self.steps = steps # number of di-fgsm steps
self.alpha = alpha # Maximum change in one pixel for one step (range 0-255)
self.di_pad_amount = di_pad_amount # Maximum value that can be padded
self.di_prob = di_prob # Probability of deciding whether to apply DI transform or not
self._supported_mode = ['default', 'targeted'] # deciding targeted attack or not
def diverse_input(self, x_adv):
x_di = x_adv # size : [24,3,32,32]
h, w = x_di.shape[2], x_di.shape[3] # original image size, h: 32, w: 32
# random value that be padded
pad_max = self.di_pad_amount - int(torch.rand(1) * self.di_pad_amount) # pad_max : 2
# random value that be padded left
pad_left = int(torch.rand(1) * pad_max) # pad_left : 1
# random value that be padded right
pad_right = pad_max - pad_left # pad_right : 1
# random value that be padded top
pad_top = int(torch.rand(1) * pad_max) # pad_top : 1
# random value that be padded bottom
pad_bottom = pad_max - pad_top # pad_bottom : 1
# four vertices of the original image
# tensor([[[ 0., 0.], [31., 0.], [31., 31.], [ 0., 31.]]])
points_src = torch.FloatTensor([[
[0, 0], [w - 1, 0], [w - 1 + 0, h - 1 + 0], [0, h - 1 + 0],
]])
# four vertices of the image after DI transform
# tensor([[[ 1., 1.], [30., 1.], [30., 30.], [ 1., 30.]]])
points_dst = torch.FloatTensor([[
[pad_left, pad_top], [w - pad_right - 1, pad_top],
[w - pad_right - 1, h - pad_bottom - 1], [pad_left, h - pad_bottom - 1],
]])
# Matrix used in the transformation process
# tensor([[[0.9355, 0.0000, 1.0000], [0.0000, 0.9355, 1.0000], [0.0000, 0.0000, 1.0000]]])
M = tgm.get_perspective_transform(points_src, points_dst)
# The image is resized and padded so that the vertices of the original image go to the new vertices.
x_di = tgm.warp_perspective(x_di, torch.cat(x_di.shape[0] * [M]).cuda(), dsize=(w, h)).cuda()
x_di = transforms.Resize((w, h), interpolation=InterpolationMode.NEAREST)(x_di)
# If the random value is less than or equal to di_prob, di conversion does not occur.
cond = torch.rand(x_adv.shape[0]) < self.di_prob
cond = cond.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
x_di = torch.where(cond.cuda(), x_di, x_adv)
return x_di
def forward(self, images, labels):
"""
Overridden.
"""
images = images.clone().detach().to(self.device)
labels = labels.clone().detach().to(self.device)
if self._targeted: # targeted attack case, get target label
target_labels = self._get_target_label(images, labels)
loss = nn.CrossEntropyLoss() # use Cross-Entropy loss for classification
adv_images = images.clone().detach()
for _ in range(self.steps):
adv_images.requires_grad = True
outputs = self.model(self.diverse_input(adv_images)) # after DI transform image
# Calculate loss
if self._targeted:
cost = -loss(outputs, target_labels) # targeted attack case, use -loss function
else:
cost = loss(outputs, labels) # else, (untargeted attack case), use +loss function
# Update adversarial images
grad = torch.autograd.grad(cost, adv_images,
retain_graph=False, create_graph=False)[0]
grad = grad / torch.mean(torch.abs(grad), dim=(1,2,3), keepdim=True)
adv_images = adv_images.detach() + self.alpha*grad.sign() # I-fgsm step
delta = torch.clamp(adv_images - images, min=-self.eps, max=self.eps) # limiting changes beyond epsilon
adv_images = torch.clamp(images + delta, min=0, max=1).detach()
return adv_images
๐Example code
Transfer Attack.py ์ฝ๋์์, DI-FGSM์ ์ด์ฉํ Transfer Attack์ ์ฑ๋ฅ์ ์คํํด๋ณด์์ต๋๋ค.